Mojtaba Shahbazi Dastjerdi, Ali Mokhtarian, Payam Saraeian
{"title":"采用田口法、信噪比分析和总归一化质量损失研究了电介质中氧化铝粉末对A413-Al2O3复合铝材料电火花加工参数的影响","authors":"Mojtaba Shahbazi Dastjerdi, Ali Mokhtarian, Payam Saraeian","doi":"10.1186/s40712-020-00117-z","DOIUrl":null,"url":null,"abstract":"<p>The machining capability of metal composites is different compared to other materials because of their specific physical and mechanical properties. The aluminum composite A413 reinforced with Alumina powder is one of the materials which causes rapid erosion of the tool if traditional machining methods are employed. In this research, the electrical discharge machining experiments were conducted using the Taguchi method. After analysis of variance (ANOVA) using simultaneous analysis of total normalized quality loss (TNQL), and signal-to-noise ratio (S/N) of outputs, the effect of each parameter such as current intensity, voltage, pulse on-time and pulse off-time have been investigated. These parameters are influential on material removal rates, surface roughness, and tool wear ratio of electric discharge machining in two cases of with alumina powder and without alumina powder in dielectric. The outcomes of this research indicate that the use of Alumina powder 3?g/L in kerosene dielectric averagely reduces the material removal rate by 7.8%, increases the surface roughness by 8.8%, and decreases the tool wear ratio by 1.3%. Also, the results of analysis of total normalized quality loss and signal-to-noise ratio of the experiment have been shown as the first level of voltage (<i>A</i><sub>1</sub>), the first level of current intensity (<i>B</i><sub>1</sub>), the first level of pulse on time (<i>C</i><sub>1</sub>), and the third level of pulse off time (<i>D</i><sub>3</sub>).</p>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"15 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40712-020-00117-z","citationCount":"3","resultStr":"{\"title\":\"The effect of alumina powder in dielectric on electrical discharge machining parameters of aluminum composite A413-Al2O3 by the Taguchi method, the signal-to-noise analysis and the total normalized quality loss\",\"authors\":\"Mojtaba Shahbazi Dastjerdi, Ali Mokhtarian, Payam Saraeian\",\"doi\":\"10.1186/s40712-020-00117-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The machining capability of metal composites is different compared to other materials because of their specific physical and mechanical properties. The aluminum composite A413 reinforced with Alumina powder is one of the materials which causes rapid erosion of the tool if traditional machining methods are employed. In this research, the electrical discharge machining experiments were conducted using the Taguchi method. After analysis of variance (ANOVA) using simultaneous analysis of total normalized quality loss (TNQL), and signal-to-noise ratio (S/N) of outputs, the effect of each parameter such as current intensity, voltage, pulse on-time and pulse off-time have been investigated. These parameters are influential on material removal rates, surface roughness, and tool wear ratio of electric discharge machining in two cases of with alumina powder and without alumina powder in dielectric. The outcomes of this research indicate that the use of Alumina powder 3?g/L in kerosene dielectric averagely reduces the material removal rate by 7.8%, increases the surface roughness by 8.8%, and decreases the tool wear ratio by 1.3%. Also, the results of analysis of total normalized quality loss and signal-to-noise ratio of the experiment have been shown as the first level of voltage (<i>A</i><sub>1</sub>), the first level of current intensity (<i>B</i><sub>1</sub>), the first level of pulse on time (<i>C</i><sub>1</sub>), and the third level of pulse off time (<i>D</i><sub>3</sub>).</p>\",\"PeriodicalId\":592,\"journal\":{\"name\":\"International Journal of Mechanical and Materials Engineering\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2020-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40712-020-00117-z\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40712-020-00117-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-020-00117-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of alumina powder in dielectric on electrical discharge machining parameters of aluminum composite A413-Al2O3 by the Taguchi method, the signal-to-noise analysis and the total normalized quality loss
The machining capability of metal composites is different compared to other materials because of their specific physical and mechanical properties. The aluminum composite A413 reinforced with Alumina powder is one of the materials which causes rapid erosion of the tool if traditional machining methods are employed. In this research, the electrical discharge machining experiments were conducted using the Taguchi method. After analysis of variance (ANOVA) using simultaneous analysis of total normalized quality loss (TNQL), and signal-to-noise ratio (S/N) of outputs, the effect of each parameter such as current intensity, voltage, pulse on-time and pulse off-time have been investigated. These parameters are influential on material removal rates, surface roughness, and tool wear ratio of electric discharge machining in two cases of with alumina powder and without alumina powder in dielectric. The outcomes of this research indicate that the use of Alumina powder 3?g/L in kerosene dielectric averagely reduces the material removal rate by 7.8%, increases the surface roughness by 8.8%, and decreases the tool wear ratio by 1.3%. Also, the results of analysis of total normalized quality loss and signal-to-noise ratio of the experiment have been shown as the first level of voltage (A1), the first level of current intensity (B1), the first level of pulse on time (C1), and the third level of pulse off time (D3).