Malathion、DIMP和Strawberry Furanone作为CWA模拟物的评估,用于现场级室内建筑修复演习

IF 2.9 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH ACS Chemical Health & Safety Pub Date : 2023-06-21 DOI:10.1021/acs.chas.3c00029
Lukas Oudejans*, Barbara Wyrzykowska-Ceradini, Eric Morris, Stephen Jackson, Abderrahmane Touati, Jonathan Sawyer, Anne Mikelonis and Shannon Serre, 
{"title":"Malathion、DIMP和Strawberry Furanone作为CWA模拟物的评估,用于现场级室内建筑修复演习","authors":"Lukas Oudejans*,&nbsp;Barbara Wyrzykowska-Ceradini,&nbsp;Eric Morris,&nbsp;Stephen Jackson,&nbsp;Abderrahmane Touati,&nbsp;Jonathan Sawyer,&nbsp;Anne Mikelonis and Shannon Serre,&nbsp;","doi":"10.1021/acs.chas.3c00029","DOIUrl":null,"url":null,"abstract":"<p >Field-level exercises with the purpose to assess remediation following the deliberate release of a highly toxic chemical in an indoor environment can be conducted using low(er) toxicity simulants if they are closely linked to the behavior of the toxic chemical itself. Chemical warfare agent (CWA) simulants have been identified on their suitability based on chemical structural similarities and associated physical and chemical properties. However, there are no reported studies that combine measurement of simulant parameters like persistence on surfaces, ability to sample for, and capability to degrade during the decontamination phase such that the level of success of a field-level exercise can be quantified. Experimental research was conducted to assess these gaps using a select number of CWA simulants. The organophosphate pesticide malathion was found to be a suitable simulant for use in field-level exercises that simulate the release of the highly persistent nerve agent VX based on its high persistence, effective surface sampling and analysis using standard analytical equipment, and the in situ degradation in the presence of different oxidizing decontaminants.</p>","PeriodicalId":12,"journal":{"name":"ACS Chemical Health & Safety","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Malathion, DIMP, and Strawberry Furanone as CWA Simulants for Consideration in Field-Level Interior Building Remediation Exercises\",\"authors\":\"Lukas Oudejans*,&nbsp;Barbara Wyrzykowska-Ceradini,&nbsp;Eric Morris,&nbsp;Stephen Jackson,&nbsp;Abderrahmane Touati,&nbsp;Jonathan Sawyer,&nbsp;Anne Mikelonis and Shannon Serre,&nbsp;\",\"doi\":\"10.1021/acs.chas.3c00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Field-level exercises with the purpose to assess remediation following the deliberate release of a highly toxic chemical in an indoor environment can be conducted using low(er) toxicity simulants if they are closely linked to the behavior of the toxic chemical itself. Chemical warfare agent (CWA) simulants have been identified on their suitability based on chemical structural similarities and associated physical and chemical properties. However, there are no reported studies that combine measurement of simulant parameters like persistence on surfaces, ability to sample for, and capability to degrade during the decontamination phase such that the level of success of a field-level exercise can be quantified. Experimental research was conducted to assess these gaps using a select number of CWA simulants. The organophosphate pesticide malathion was found to be a suitable simulant for use in field-level exercises that simulate the release of the highly persistent nerve agent VX based on its high persistence, effective surface sampling and analysis using standard analytical equipment, and the in situ degradation in the presence of different oxidizing decontaminants.</p>\",\"PeriodicalId\":12,\"journal\":{\"name\":\"ACS Chemical Health & Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Health & Safety\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chas.3c00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Health & Safety","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.3c00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

在室内环境中故意释放剧毒化学品后,如果与有毒化学品本身的行为密切相关,则可以使用低毒模拟物进行现场演习,以评估补救措施。化学战剂(CWA)模拟物已根据其化学结构相似性和相关物理化学性质的适用性进行了鉴定。然而,没有报道将模拟物参数的测量结合起来的研究,如表面的持久性、采样能力和去污阶段的降解能力,从而可以量化实地演习的成功程度。使用选定数量的CWA模拟物进行了实验研究,以评估这些差距。有机磷农药马拉硫磷被发现是一种适合用于现场演习的模拟物,模拟高持久性神经毒剂VX的释放,因为它具有高持久性,使用标准分析设备进行有效的表面采样和分析,以及在不同氧化性去污剂存在下的原位降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Malathion, DIMP, and Strawberry Furanone as CWA Simulants for Consideration in Field-Level Interior Building Remediation Exercises

Field-level exercises with the purpose to assess remediation following the deliberate release of a highly toxic chemical in an indoor environment can be conducted using low(er) toxicity simulants if they are closely linked to the behavior of the toxic chemical itself. Chemical warfare agent (CWA) simulants have been identified on their suitability based on chemical structural similarities and associated physical and chemical properties. However, there are no reported studies that combine measurement of simulant parameters like persistence on surfaces, ability to sample for, and capability to degrade during the decontamination phase such that the level of success of a field-level exercise can be quantified. Experimental research was conducted to assess these gaps using a select number of CWA simulants. The organophosphate pesticide malathion was found to be a suitable simulant for use in field-level exercises that simulate the release of the highly persistent nerve agent VX based on its high persistence, effective surface sampling and analysis using standard analytical equipment, and the in situ degradation in the presence of different oxidizing decontaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Health & Safety
ACS Chemical Health & Safety PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.10
自引率
20.00%
发文量
63
期刊介绍: The Journal of Chemical Health and Safety focuses on news, information, and ideas relating to issues and advances in chemical health and safety. The Journal of Chemical Health and Safety covers up-to-the minute, in-depth views of safety issues ranging from OSHA and EPA regulations to the safe handling of hazardous waste, from the latest innovations in effective chemical hygiene practices to the courts'' most recent rulings on safety-related lawsuits. The Journal of Chemical Health and Safety presents real-world information that health, safety and environmental professionals and others responsible for the safety of their workplaces can put to use right away, identifying potential and developing safety concerns before they do real harm.
期刊最新文献
Reconstruction of Curriculum System for Chemical Safety Undergraduate Education under Emerging Engineering Education Requirements The Gist of the List Spotlights: Untargeted Forensic Drug Detection, Burn Pit Smoke Inhalation, and Problems in the Friction Sensitivity Literature The Chemical Exposure Multiverse: A Call for Papers that Provide Accurate Toxicity and Exposure Data in the Laboratory and Beyond Community Connections Committee: How the Joint Safety Team of the University of Minnesota Innovates Promoting Vertical Safety Engagement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1