Abdallah M. Elgorban, D. Sivaganesh, Muthuraj Arunpandian, Ali H. Bahkali, Rajalakshmanan Eswaramoorthy, Nouf S. S. Zaghloul, Meenakshi Verma, Asad Syed
{"title":"可见光嵌入CuO/ZnO的光催化和光致发光双重执行","authors":"Abdallah M. Elgorban, D. Sivaganesh, Muthuraj Arunpandian, Ali H. Bahkali, Rajalakshmanan Eswaramoorthy, Nouf S. S. Zaghloul, Meenakshi Verma, Asad Syed","doi":"10.1007/s10832-023-00311-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, tackle the two issues with one single activity resource that strategy has followed. The organic dye methyl orange (MO) and drug ciprofloxacin (CIP) have been effectively degraded by the synthesized ZnO@CuO under visible light irradiation. The hexagonal structured zinc oxide (ZnO), monoclinic structured copper oxide (CuO) and the mixed phase of ZnO@CuO has been prepared by the hydrothermal method. The structural characterization of prepared materials has been analyzed by powder X-ray diffraction (P-XRD) and the Rietveld refinement technique. The surface morphology of synthesized materials has been measured by scanning electron microscope characterization. The luminescence performance of prepared materials has studied by photoluminescence (PL) characterization. The photocatalytic results suggest that the ZnO@CuO composite is the effective candidate of degradation of ciprofloxacin antibiotic drug and methyl orange dye. From the results, ZnO@CuO revealed excellent photocatalytic behavior for CIP and MO degradation under stimulated sun light irradiation with the efficiency of above 95%. In addition, the optimum parameters were analyzed to the degradation process. This type of affordable photocatalyst gives a new beginning for further research studies. In addition, the electron density distribution analysis of synthesized materials has been studied.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 1","pages":"12 - 27"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-023-00311-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Visible light-embedded CuO/ZnO twofold execution for photocatalysis and photoluminescence\",\"authors\":\"Abdallah M. Elgorban, D. Sivaganesh, Muthuraj Arunpandian, Ali H. Bahkali, Rajalakshmanan Eswaramoorthy, Nouf S. S. Zaghloul, Meenakshi Verma, Asad Syed\",\"doi\":\"10.1007/s10832-023-00311-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, tackle the two issues with one single activity resource that strategy has followed. The organic dye methyl orange (MO) and drug ciprofloxacin (CIP) have been effectively degraded by the synthesized ZnO@CuO under visible light irradiation. The hexagonal structured zinc oxide (ZnO), monoclinic structured copper oxide (CuO) and the mixed phase of ZnO@CuO has been prepared by the hydrothermal method. The structural characterization of prepared materials has been analyzed by powder X-ray diffraction (P-XRD) and the Rietveld refinement technique. The surface morphology of synthesized materials has been measured by scanning electron microscope characterization. The luminescence performance of prepared materials has studied by photoluminescence (PL) characterization. The photocatalytic results suggest that the ZnO@CuO composite is the effective candidate of degradation of ciprofloxacin antibiotic drug and methyl orange dye. From the results, ZnO@CuO revealed excellent photocatalytic behavior for CIP and MO degradation under stimulated sun light irradiation with the efficiency of above 95%. In addition, the optimum parameters were analyzed to the degradation process. This type of affordable photocatalyst gives a new beginning for further research studies. In addition, the electron density distribution analysis of synthesized materials has been studied.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"51 1\",\"pages\":\"12 - 27\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10832-023-00311-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-023-00311-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-023-00311-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Visible light-embedded CuO/ZnO twofold execution for photocatalysis and photoluminescence
In the present work, tackle the two issues with one single activity resource that strategy has followed. The organic dye methyl orange (MO) and drug ciprofloxacin (CIP) have been effectively degraded by the synthesized ZnO@CuO under visible light irradiation. The hexagonal structured zinc oxide (ZnO), monoclinic structured copper oxide (CuO) and the mixed phase of ZnO@CuO has been prepared by the hydrothermal method. The structural characterization of prepared materials has been analyzed by powder X-ray diffraction (P-XRD) and the Rietveld refinement technique. The surface morphology of synthesized materials has been measured by scanning electron microscope characterization. The luminescence performance of prepared materials has studied by photoluminescence (PL) characterization. The photocatalytic results suggest that the ZnO@CuO composite is the effective candidate of degradation of ciprofloxacin antibiotic drug and methyl orange dye. From the results, ZnO@CuO revealed excellent photocatalytic behavior for CIP and MO degradation under stimulated sun light irradiation with the efficiency of above 95%. In addition, the optimum parameters were analyzed to the degradation process. This type of affordable photocatalyst gives a new beginning for further research studies. In addition, the electron density distribution analysis of synthesized materials has been studied.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.