电池系统用聚合物共混电解质的发展:最新进展、挑战和未来展望

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2023-03-31 DOI:10.1007/s40243-023-00231-w
Negese Yazie, Delele Worku, Nigus Gabbiye, Addisu Alemayehu, Zerihun Getahun, Mehary Dagnew
{"title":"电池系统用聚合物共混电解质的发展:最新进展、挑战和未来展望","authors":"Negese Yazie,&nbsp;Delele Worku,&nbsp;Nigus Gabbiye,&nbsp;Addisu Alemayehu,&nbsp;Zerihun Getahun,&nbsp;Mehary Dagnew","doi":"10.1007/s40243-023-00231-w","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, addressing the drawbacks of liquid electrolyte-based batteries is a hot and challenging issue, which is supposed to be fulfilled through solid electrolyte systems such as polymer electrolytes. Polymer blend electrolytes (PBEs) are widely investigated as viable options to solve the undesired characteristics of their liquid counterparts and also the poor ionic conductivity of homopolymer-based electrolytes. Even though PBEs outperform homopolymer-based electrolytes in terms of performance, the conductivity of pristine PBEs is quite low for practical applications (i.e. below 10<sup>–3</sup> S/cm at room temperature). A very promising approach to solve this limitation is to incorporate additives into the electrolyte systems, to select suitable polymeric materials and to employ the desired synthesizing techniques as the performance of PBEs is strongly dependent on the selection of polymeric materials (i.e. on the inherent properties of polymers), the nature and amount of salts and other additives, and also the techniques employed to synthesize the polymer blend hosts and/or polymer blend electrolytes, determining the functionality, amorphousness, dielectric constant, dimensional stability, and, ultimately, the electrochemical performances of the system. This paper reviews the different factors affecting the miscibility of polymer blends, PBEs synthesizing techniques, the thermal, chemical, mechanical and electrochemical characteristics of PBEs, and also the challenges and opportunities of PBEs. Moreover, the paper presents the current progress of polymer blend electrolytes as well as future prospects for advancing polymer blend electrolytes in the energy storage sectors.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00231-w.pdf","citationCount":"4","resultStr":"{\"title\":\"Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook\",\"authors\":\"Negese Yazie,&nbsp;Delele Worku,&nbsp;Nigus Gabbiye,&nbsp;Addisu Alemayehu,&nbsp;Zerihun Getahun,&nbsp;Mehary Dagnew\",\"doi\":\"10.1007/s40243-023-00231-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, addressing the drawbacks of liquid electrolyte-based batteries is a hot and challenging issue, which is supposed to be fulfilled through solid electrolyte systems such as polymer electrolytes. Polymer blend electrolytes (PBEs) are widely investigated as viable options to solve the undesired characteristics of their liquid counterparts and also the poor ionic conductivity of homopolymer-based electrolytes. Even though PBEs outperform homopolymer-based electrolytes in terms of performance, the conductivity of pristine PBEs is quite low for practical applications (i.e. below 10<sup>–3</sup> S/cm at room temperature). A very promising approach to solve this limitation is to incorporate additives into the electrolyte systems, to select suitable polymeric materials and to employ the desired synthesizing techniques as the performance of PBEs is strongly dependent on the selection of polymeric materials (i.e. on the inherent properties of polymers), the nature and amount of salts and other additives, and also the techniques employed to synthesize the polymer blend hosts and/or polymer blend electrolytes, determining the functionality, amorphousness, dielectric constant, dimensional stability, and, ultimately, the electrochemical performances of the system. This paper reviews the different factors affecting the miscibility of polymer blends, PBEs synthesizing techniques, the thermal, chemical, mechanical and electrochemical characteristics of PBEs, and also the challenges and opportunities of PBEs. Moreover, the paper presents the current progress of polymer blend electrolytes as well as future prospects for advancing polymer blend electrolytes in the energy storage sectors.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-023-00231-w.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-023-00231-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-023-00231-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

如今,解决基于液体电解质的电池的缺点是一个热门且具有挑战性的问题,这应该通过聚合物电解质等固体电解质系统来实现。聚合物共混电解质(PBE)被广泛研究为解决其液体对应物的不期望特性以及基于均聚物的电解质的较差离子导电性的可行选择。尽管多溴联苯醚在性能方面优于均聚物基电解质,但在实际应用中,原始多溴联苯的电导率相当低(即室温下低于10–3 S/cm)。解决这一限制的一种非常有前途的方法是将添加剂掺入电解质系统,选择合适的聚合物材料,并采用所需的合成技术,因为PBE的性能在很大程度上取决于聚合物材料的选择(即聚合物的固有性质)、盐和其他添加剂的性质和量,以及用于合成聚合物共混物主体和/或聚合物共混物电解质的技术,确定系统的功能性、非晶态、介电常数、尺寸稳定性,以及最终的电化学性能。本文综述了影响聚合物共混物混溶性的不同因素,多溴联苯醚的合成技术,多溴苯醚的热、化学、机械和电化学特性,以及多溴联苯烯面临的挑战和机遇。此外,本文还介绍了聚合物共混电解质的最新进展,以及在储能领域推进聚合物共混电解质发展的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook

Nowadays, addressing the drawbacks of liquid electrolyte-based batteries is a hot and challenging issue, which is supposed to be fulfilled through solid electrolyte systems such as polymer electrolytes. Polymer blend electrolytes (PBEs) are widely investigated as viable options to solve the undesired characteristics of their liquid counterparts and also the poor ionic conductivity of homopolymer-based electrolytes. Even though PBEs outperform homopolymer-based electrolytes in terms of performance, the conductivity of pristine PBEs is quite low for practical applications (i.e. below 10–3 S/cm at room temperature). A very promising approach to solve this limitation is to incorporate additives into the electrolyte systems, to select suitable polymeric materials and to employ the desired synthesizing techniques as the performance of PBEs is strongly dependent on the selection of polymeric materials (i.e. on the inherent properties of polymers), the nature and amount of salts and other additives, and also the techniques employed to synthesize the polymer blend hosts and/or polymer blend electrolytes, determining the functionality, amorphousness, dielectric constant, dimensional stability, and, ultimately, the electrochemical performances of the system. This paper reviews the different factors affecting the miscibility of polymer blends, PBEs synthesizing techniques, the thermal, chemical, mechanical and electrochemical characteristics of PBEs, and also the challenges and opportunities of PBEs. Moreover, the paper presents the current progress of polymer blend electrolytes as well as future prospects for advancing polymer blend electrolytes in the energy storage sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review Novel Nafion nanocomposite membranes embedded with TiO2-decorated MWCNTs for high-temperature/low relative humidity fuel cell systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1