Shivangi Srivastava, Vinay Kumar Pandey, Rahul Singh, Aamir Hussain Dar
{"title":"从3D到7D食品印刷技术的进步和实质性转变的最新见解","authors":"Shivangi Srivastava, Vinay Kumar Pandey, Rahul Singh, Aamir Hussain Dar","doi":"10.1007/s10068-023-01352-8","DOIUrl":null,"url":null,"abstract":"<div><p>Food printing using 3D, 4D, and 5D printing processes has received a lot of interest as a result of rising living standards and increased customer desire for new foods. In the food industry, 3D as well as 4D printing are extremely effective methods for additive manufacturing. The 3D printing technology produces flat objects with a variety of mechanical strengths. The strength of the object depends on the type of material used and the printing process. Printing structures with the most complex geometric, such as curved surfaces, necessitates the usage of supplementary material. The 4D printing procedure necessitates additional stimuli in order to adjust the aspect of the generated geometry. These obstacles can be addressed by employing 5D printing techniques, which prints the product in three motions and two rotational axes without the use of additional support material. These emerging innovations are likely to result in substantial advancements in all industries, including the manufacturing of high-quality food products. Food printing technology can be used to create long shelf-life products by printing food with protective coatings that prevent oxidation and degradation. Foods can also be printed in specific shapes or sizes to reduce surface area exposed to air. 6D printed objects can be created as a result of 5D printing because it is regarded as a by-product of 5D printing technology. 6D printing can save time and money by using the right processing parameters to create strong materials that are more sensitive to stimuli. 7D printing can enable more efficient production processes, reduce costs, and enable the development of products that are more complex and intricate than what is achievable with traditional manufacturing methods. The revolutionary change brought by food printing technologies in the field of applications, research and development, processing, advantages in food industry have been discussed in this paper.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"32 13","pages":"1783 - 1804"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent insights on advancements and substantial transformations in food printing technology from 3 to 7D\",\"authors\":\"Shivangi Srivastava, Vinay Kumar Pandey, Rahul Singh, Aamir Hussain Dar\",\"doi\":\"10.1007/s10068-023-01352-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Food printing using 3D, 4D, and 5D printing processes has received a lot of interest as a result of rising living standards and increased customer desire for new foods. In the food industry, 3D as well as 4D printing are extremely effective methods for additive manufacturing. The 3D printing technology produces flat objects with a variety of mechanical strengths. The strength of the object depends on the type of material used and the printing process. Printing structures with the most complex geometric, such as curved surfaces, necessitates the usage of supplementary material. The 4D printing procedure necessitates additional stimuli in order to adjust the aspect of the generated geometry. These obstacles can be addressed by employing 5D printing techniques, which prints the product in three motions and two rotational axes without the use of additional support material. These emerging innovations are likely to result in substantial advancements in all industries, including the manufacturing of high-quality food products. Food printing technology can be used to create long shelf-life products by printing food with protective coatings that prevent oxidation and degradation. Foods can also be printed in specific shapes or sizes to reduce surface area exposed to air. 6D printed objects can be created as a result of 5D printing because it is regarded as a by-product of 5D printing technology. 6D printing can save time and money by using the right processing parameters to create strong materials that are more sensitive to stimuli. 7D printing can enable more efficient production processes, reduce costs, and enable the development of products that are more complex and intricate than what is achievable with traditional manufacturing methods. The revolutionary change brought by food printing technologies in the field of applications, research and development, processing, advantages in food industry have been discussed in this paper.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"32 13\",\"pages\":\"1783 - 1804\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-023-01352-8\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-023-01352-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent insights on advancements and substantial transformations in food printing technology from 3 to 7D
Food printing using 3D, 4D, and 5D printing processes has received a lot of interest as a result of rising living standards and increased customer desire for new foods. In the food industry, 3D as well as 4D printing are extremely effective methods for additive manufacturing. The 3D printing technology produces flat objects with a variety of mechanical strengths. The strength of the object depends on the type of material used and the printing process. Printing structures with the most complex geometric, such as curved surfaces, necessitates the usage of supplementary material. The 4D printing procedure necessitates additional stimuli in order to adjust the aspect of the generated geometry. These obstacles can be addressed by employing 5D printing techniques, which prints the product in three motions and two rotational axes without the use of additional support material. These emerging innovations are likely to result in substantial advancements in all industries, including the manufacturing of high-quality food products. Food printing technology can be used to create long shelf-life products by printing food with protective coatings that prevent oxidation and degradation. Foods can also be printed in specific shapes or sizes to reduce surface area exposed to air. 6D printed objects can be created as a result of 5D printing because it is regarded as a by-product of 5D printing technology. 6D printing can save time and money by using the right processing parameters to create strong materials that are more sensitive to stimuli. 7D printing can enable more efficient production processes, reduce costs, and enable the development of products that are more complex and intricate than what is achievable with traditional manufacturing methods. The revolutionary change brought by food printing technologies in the field of applications, research and development, processing, advantages in food industry have been discussed in this paper.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.