{"title":"通过调节结晶和相分离提高韧性和强度的聚(L-丙交酯)-b-聚(ε-己内酯)-b--聚(D,L-丙交交酯)共聚物","authors":"Yipeng Chen, Jiangang Zhang, Yuesheng Zhang, Wen Cao, Xiong Liu, Jianna Bao, Xianming Zhang, Wenxing Chen","doi":"10.1002/pol.20230425","DOIUrl":null,"url":null,"abstract":"<p>Copolymerizing poly(lactide) with other materials to obtain better comprehensive performance is a effective way to expand its application range. In this work, the precursors of hydroxyl terminated (poly(L-lactide) [PLLA], poly(ε-caprolactone) [PCL], poly(D,L-lactide) [PDLLA]) were prepared, and PLLA-PCL-PDLLA copolymer were synthesized by chain extension. The effects of the proportion and molecular weight of each component and the amount of chain extender on crystallization, phase structures, mechanical properties and thermal stabilities of PLLA-PCL-PDLLA copolymer were studied in detail. Based on small-angle X-ray scattering results, the competition between crystallization and microphase separation was regulated by the composition and chain length of prepolymers. As the ratio of PLLA/PDLLA was 1:1, crystallization was prevailing and no obvious peak was observed in SAXS pattern. The tensile test results showed that as the ratio of PLLA/PDLLA increased from 1:1 to 1:5, the elongation at break of the copolymer changed from 1.8% to 343%. By using shorter length of PCL and PLLA segments in chain extension, improvement in strength and flexibility were obtained due to moderate degree of crystallization and microphase separation. This work used biodegradable materials to prepare extraordinary toughness copolymers without losing the biocompatibility, which may provide a feasible method for obtaining high toughness and biodegradable PLA-based materials.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 19","pages":"2303-2315"},"PeriodicalIF":2.7020,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(L-lactide)-b-poly(ε-caprolactone)-b-poly(D,L-lactide) copolymers with enhanced toughness and strength by regulating crystallization and phase separation\",\"authors\":\"Yipeng Chen, Jiangang Zhang, Yuesheng Zhang, Wen Cao, Xiong Liu, Jianna Bao, Xianming Zhang, Wenxing Chen\",\"doi\":\"10.1002/pol.20230425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Copolymerizing poly(lactide) with other materials to obtain better comprehensive performance is a effective way to expand its application range. In this work, the precursors of hydroxyl terminated (poly(L-lactide) [PLLA], poly(ε-caprolactone) [PCL], poly(D,L-lactide) [PDLLA]) were prepared, and PLLA-PCL-PDLLA copolymer were synthesized by chain extension. The effects of the proportion and molecular weight of each component and the amount of chain extender on crystallization, phase structures, mechanical properties and thermal stabilities of PLLA-PCL-PDLLA copolymer were studied in detail. Based on small-angle X-ray scattering results, the competition between crystallization and microphase separation was regulated by the composition and chain length of prepolymers. As the ratio of PLLA/PDLLA was 1:1, crystallization was prevailing and no obvious peak was observed in SAXS pattern. The tensile test results showed that as the ratio of PLLA/PDLLA increased from 1:1 to 1:5, the elongation at break of the copolymer changed from 1.8% to 343%. By using shorter length of PCL and PLLA segments in chain extension, improvement in strength and flexibility were obtained due to moderate degree of crystallization and microphase separation. This work used biodegradable materials to prepare extraordinary toughness copolymers without losing the biocompatibility, which may provide a feasible method for obtaining high toughness and biodegradable PLA-based materials.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 19\",\"pages\":\"2303-2315\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Poly(L-lactide)-b-poly(ε-caprolactone)-b-poly(D,L-lactide) copolymers with enhanced toughness and strength by regulating crystallization and phase separation
Copolymerizing poly(lactide) with other materials to obtain better comprehensive performance is a effective way to expand its application range. In this work, the precursors of hydroxyl terminated (poly(L-lactide) [PLLA], poly(ε-caprolactone) [PCL], poly(D,L-lactide) [PDLLA]) were prepared, and PLLA-PCL-PDLLA copolymer were synthesized by chain extension. The effects of the proportion and molecular weight of each component and the amount of chain extender on crystallization, phase structures, mechanical properties and thermal stabilities of PLLA-PCL-PDLLA copolymer were studied in detail. Based on small-angle X-ray scattering results, the competition between crystallization and microphase separation was regulated by the composition and chain length of prepolymers. As the ratio of PLLA/PDLLA was 1:1, crystallization was prevailing and no obvious peak was observed in SAXS pattern. The tensile test results showed that as the ratio of PLLA/PDLLA increased from 1:1 to 1:5, the elongation at break of the copolymer changed from 1.8% to 343%. By using shorter length of PCL and PLLA segments in chain extension, improvement in strength and flexibility were obtained due to moderate degree of crystallization and microphase separation. This work used biodegradable materials to prepare extraordinary toughness copolymers without losing the biocompatibility, which may provide a feasible method for obtaining high toughness and biodegradable PLA-based materials.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...