WFNet:一种用于野火蔓延预测的分层卷积神经网络

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2023-09-30 DOI:10.1016/j.envsoft.2023.105841
Wenyu Jiang , Yuming Qiao , Guofeng Su , Xin Li , Qingxiang Meng , Hongying Wu , Wei Quan , Jing Wang , Fei Wang
{"title":"WFNet:一种用于野火蔓延预测的分层卷积神经网络","authors":"Wenyu Jiang ,&nbsp;Yuming Qiao ,&nbsp;Guofeng Su ,&nbsp;Xin Li ,&nbsp;Qingxiang Meng ,&nbsp;Hongying Wu ,&nbsp;Wei Quan ,&nbsp;Jing Wang ,&nbsp;Fei Wang","doi":"10.1016/j.envsoft.2023.105841","DOIUrl":null,"url":null,"abstract":"<div><p>Pattern analysis in wildfire spread behaviors is crucial for rescue actions and disaster reduction. Deep learning methods have the potential to model the wildfire spread despite problems such as continuous time prediction and multimodal environmental encoding. Therefore, we present a novel hierarchical convolutional neural network (CNN) denoted as <em>WFNet</em> to model the spread pattern of wildfires. The core of <em>WFNet</em> is defining the spread spatiotemporal distribution field (SSDF) to describe the process of wildfire spread, enabling global optimization and end-to-end prediction. Then, a hierarchical State-Condition mechanism is implemented to progressively and efficiently encode high-order features pertaining to multimodal elements. The experimental results demonstrate that <em>WFNet</em> has a competitive performance to existing models in computation time and model accuracy. More interestingly, <em>WFNet</em> shows excellent robustness when input fire state is in an uncertain moment, enabling investigators to quickly backward the ignition from the fire perimeter.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"170 ","pages":"Article 105841"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WFNet: A hierarchical convolutional neural network for wildfire spread prediction\",\"authors\":\"Wenyu Jiang ,&nbsp;Yuming Qiao ,&nbsp;Guofeng Su ,&nbsp;Xin Li ,&nbsp;Qingxiang Meng ,&nbsp;Hongying Wu ,&nbsp;Wei Quan ,&nbsp;Jing Wang ,&nbsp;Fei Wang\",\"doi\":\"10.1016/j.envsoft.2023.105841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pattern analysis in wildfire spread behaviors is crucial for rescue actions and disaster reduction. Deep learning methods have the potential to model the wildfire spread despite problems such as continuous time prediction and multimodal environmental encoding. Therefore, we present a novel hierarchical convolutional neural network (CNN) denoted as <em>WFNet</em> to model the spread pattern of wildfires. The core of <em>WFNet</em> is defining the spread spatiotemporal distribution field (SSDF) to describe the process of wildfire spread, enabling global optimization and end-to-end prediction. Then, a hierarchical State-Condition mechanism is implemented to progressively and efficiently encode high-order features pertaining to multimodal elements. The experimental results demonstrate that <em>WFNet</em> has a competitive performance to existing models in computation time and model accuracy. More interestingly, <em>WFNet</em> shows excellent robustness when input fire state is in an uncertain moment, enabling investigators to quickly backward the ignition from the fire perimeter.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"170 \",\"pages\":\"Article 105841\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136481522300227X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522300227X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

野火蔓延行为的模式分析对救援行动和减灾至关重要。尽管存在连续时间预测和多模式环境编码等问题,深度学习方法仍有可能对野火蔓延进行建模。因此,我们提出了一种新的层次卷积神经网络(CNN),称为WFNet,用于对野火的传播模式进行建模。WFNet的核心是定义蔓延时空分布场(SSDF)来描述野火蔓延的过程,从而实现全局优化和端到端预测。然后,实现了一种分层状态条件机制,以逐步有效地编码与多模式元素有关的高阶特征。实验结果表明,WFNet在计算时间和模型精度方面都优于现有模型。更有趣的是,当输入火灾状态处于不确定时刻时,WFNet显示出优异的鲁棒性,使调查人员能够从火灾周边快速向后点火。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WFNet: A hierarchical convolutional neural network for wildfire spread prediction

Pattern analysis in wildfire spread behaviors is crucial for rescue actions and disaster reduction. Deep learning methods have the potential to model the wildfire spread despite problems such as continuous time prediction and multimodal environmental encoding. Therefore, we present a novel hierarchical convolutional neural network (CNN) denoted as WFNet to model the spread pattern of wildfires. The core of WFNet is defining the spread spatiotemporal distribution field (SSDF) to describe the process of wildfire spread, enabling global optimization and end-to-end prediction. Then, a hierarchical State-Condition mechanism is implemented to progressively and efficiently encode high-order features pertaining to multimodal elements. The experimental results demonstrate that WFNet has a competitive performance to existing models in computation time and model accuracy. More interestingly, WFNet shows excellent robustness when input fire state is in an uncertain moment, enabling investigators to quickly backward the ignition from the fire perimeter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data Integrated STL-DBSCAN algorithm for online hydrological and water quality monitoring data cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1