ZnO包埋水凝胶的亚硫酸盐活化降解三甲基苯酚

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2023-09-12 DOI:10.1007/s12274-023-6122-z
Jiyuan Nai, Yaning Han, Shoudu Zhang, Youxun Li, Xiaowei Chen, Ren’an Wu, Li Wang, Lei Jiang
{"title":"ZnO包埋水凝胶的亚硫酸盐活化降解三甲基苯酚","authors":"Jiyuan Nai,&nbsp;Yaning Han,&nbsp;Shoudu Zhang,&nbsp;Youxun Li,&nbsp;Xiaowei Chen,&nbsp;Ren’an Wu,&nbsp;Li Wang,&nbsp;Lei Jiang","doi":"10.1007/s12274-023-6122-z","DOIUrl":null,"url":null,"abstract":"<div><p>Trimethylphenol is an organic toxic byproduct of industrial process, which is difficult to be eliminated through conventional degradation without harsh conditions. In this work, a sulfite-based oxidation process activated by ZnO-embedded hydrogel was studied for the degradation of 2,4,6-trimethylphenols in the ambient conditions. The ZnO/Na<sub>2</sub>SO<sub>3</sub> oxidative system can effectively degrade trimethylphenol via the generation of radicals such as <span>\\({\\rm{S}}{{\\rm{O}}_4}^{. - }\\)</span>, OH<sup>·</sup>, and <span>\\({\\rm{S}}{{\\rm{O}}_3}^{. - }\\)</span>. The presence of hydrogel matrix facilitates the distribution and recyclability of ZnO catalysts while maintaining high degradation kinetics and little leaching of metal ions. Results suggest the promising potential of ZnO-hydrogel in wastewater treatment with good performance in terms of pH sensitivity, anion interference, recyclability, etc. The combination of ZnO catalysts, hydrogel, and sulfite-based advanced oxidation process may provide essential support for the current treatment of alkylated phenols with strong potential in the commercial scale-ups.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"16 10","pages":"12345 - 12356"},"PeriodicalIF":9.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfite activation by ZnO-encapsulated hydrogels for degradation of trimethylphenol\",\"authors\":\"Jiyuan Nai,&nbsp;Yaning Han,&nbsp;Shoudu Zhang,&nbsp;Youxun Li,&nbsp;Xiaowei Chen,&nbsp;Ren’an Wu,&nbsp;Li Wang,&nbsp;Lei Jiang\",\"doi\":\"10.1007/s12274-023-6122-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Trimethylphenol is an organic toxic byproduct of industrial process, which is difficult to be eliminated through conventional degradation without harsh conditions. In this work, a sulfite-based oxidation process activated by ZnO-embedded hydrogel was studied for the degradation of 2,4,6-trimethylphenols in the ambient conditions. The ZnO/Na<sub>2</sub>SO<sub>3</sub> oxidative system can effectively degrade trimethylphenol via the generation of radicals such as <span>\\\\({\\\\rm{S}}{{\\\\rm{O}}_4}^{. - }\\\\)</span>, OH<sup>·</sup>, and <span>\\\\({\\\\rm{S}}{{\\\\rm{O}}_3}^{. - }\\\\)</span>. The presence of hydrogel matrix facilitates the distribution and recyclability of ZnO catalysts while maintaining high degradation kinetics and little leaching of metal ions. Results suggest the promising potential of ZnO-hydrogel in wastewater treatment with good performance in terms of pH sensitivity, anion interference, recyclability, etc. The combination of ZnO catalysts, hydrogel, and sulfite-based advanced oxidation process may provide essential support for the current treatment of alkylated phenols with strong potential in the commercial scale-ups.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"16 10\",\"pages\":\"12345 - 12356\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-023-6122-z\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-023-6122-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

三甲基苯酚是工业过程中的一种有机有毒副产品,在没有苛刻条件的情况下,很难通过常规降解来消除。在这项工作中,研究了在环境条件下,ZnO包埋水凝胶激活的亚硫酸盐基氧化过程对2,4,6-三甲基苯酚的降解。ZnO/Na2SO3氧化体系可以通过产生自由基如\({\rm{S}}{\rm{O}}4}^{.-})、OH·和\。水凝胶基质的存在促进了ZnO催化剂的分布和可回收性,同时保持了高降解动力学和很少的金属离子浸出。结果表明,ZnO水凝胶在废水处理中具有良好的潜力,在pH敏感性、阴离子干扰、可回收性等方面具有良好的性能。ZnO催化剂、水凝胶和基于亚硫酸盐的深度氧化工艺的结合可能为目前在商业规模上处理具有强大潜力的烷基化酚提供必要的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sulfite activation by ZnO-encapsulated hydrogels for degradation of trimethylphenol

Trimethylphenol is an organic toxic byproduct of industrial process, which is difficult to be eliminated through conventional degradation without harsh conditions. In this work, a sulfite-based oxidation process activated by ZnO-embedded hydrogel was studied for the degradation of 2,4,6-trimethylphenols in the ambient conditions. The ZnO/Na2SO3 oxidative system can effectively degrade trimethylphenol via the generation of radicals such as \({\rm{S}}{{\rm{O}}_4}^{. - }\), OH·, and \({\rm{S}}{{\rm{O}}_3}^{. - }\). The presence of hydrogel matrix facilitates the distribution and recyclability of ZnO catalysts while maintaining high degradation kinetics and little leaching of metal ions. Results suggest the promising potential of ZnO-hydrogel in wastewater treatment with good performance in terms of pH sensitivity, anion interference, recyclability, etc. The combination of ZnO catalysts, hydrogel, and sulfite-based advanced oxidation process may provide essential support for the current treatment of alkylated phenols with strong potential in the commercial scale-ups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1