Jacob S. Francis, Tobias G. Mueller, Rachel L. Vannette
{"title":"花蜜微生物群的已实现扩散概率和宿主质量的种内变异","authors":"Jacob S. Francis, Tobias G. Mueller, Rachel L. Vannette","doi":"10.1111/nph.19195","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n \n </p><ul>\n \n \n <li>Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.</li>\n \n \n <li>We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of <i>Epilobium canum</i>. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.</li>\n \n \n <li>There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.</li>\n \n \n <li>These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.</li>\n </ul>\n \n </div>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":"240 3","pages":"1233-1245"},"PeriodicalIF":9.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraspecific variation in realized dispersal probability and host quality shape nectar microbiomes\",\"authors\":\"Jacob S. Francis, Tobias G. Mueller, Rachel L. Vannette\",\"doi\":\"10.1111/nph.19195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>\\n \\n </p><ul>\\n \\n \\n <li>Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.</li>\\n \\n \\n <li>We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of <i>Epilobium canum</i>. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.</li>\\n \\n \\n <li>There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.</li>\\n \\n \\n <li>These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.</li>\\n </ul>\\n \\n </div>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"240 3\",\"pages\":\"1233-1245\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/nph.19195\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.19195","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Intraspecific variation in realized dispersal probability and host quality shape nectar microbiomes
Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.
We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.
There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.
These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.