Kaisheng Yuan MD, Bing Wu MD, Ruiqi Zeng MM, Fuqing Zhou MM, Ruixiang Hu MD, Cunchuan Wang MD
{"title":"预测3岁糖尿病缓解的列线图的构建和验证 肥胖合并2型糖尿病患者的减肥手术后数月。","authors":"Kaisheng Yuan MD, Bing Wu MD, Ruiqi Zeng MM, Fuqing Zhou MM, Ruixiang Hu MD, Cunchuan Wang MD","doi":"10.1111/dom.15303","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Bariatric metabolic surgery (BMS) is a proven treatment option for patients with both obesity and type 2 diabetes mellitus (T2DM). However, there is a lack of comprehensive reporting on the short-term remission rates of diabetes, and the existing data are inadequate. Hence, this study aimed to investigate the factors that may contribute to diabetes remission (DR) in patients with obesity and T2DM, 3 months after undergoing BMS. Furthermore, our objective was to develop a risk-predicting model using a nomogram.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In total, 389 patients with obesity and T2DM, who had complete preoperative information and underwent either laparoscopic sleeve gastrectomy or laparoscopic gastric bypass surgery between January 2014 and May 2023, were screened in the Chinese Obesity and Metabolic Surgery Database. The patients were randomly divided into a training set (n = 272) and a validation set (n = 117) in a 7:3 ratio. Potential factors for DR were analysed through univariate and multivariate logistic regression analyses and then modelled using a nomogram. The model's performance was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Calibration plots were used to assess prediction accuracy and decision curve analyses were conducted to evaluate the clinical usefulness of the model.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Glycated haemoglobin, triglycerides, duration of diabetes, insulin requirement and hypercholesterolaemia were identified as independent factors influencing DR. We have incorporated these five indicators into a nomogram, which has shown good efficacy in both the training cohort (AUC = 0.930) and validation cohort (AUC = 0.838). The calibration plots indicated that the model fits well in both the training and the validation cohorts, and decision curve analyses showed that the model had good clinical applicability.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The prediction model developed in this study holds predictive value for short-term DR following BMS in patients with obesity and T2DM.</p>\n </section>\n </div>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":"26 1","pages":"169-179"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and validation of a nomogram for predicting diabetes remission at 3 months after bariatric surgery in patients with obesity combined with type 2 diabetes mellitus\",\"authors\":\"Kaisheng Yuan MD, Bing Wu MD, Ruiqi Zeng MM, Fuqing Zhou MM, Ruixiang Hu MD, Cunchuan Wang MD\",\"doi\":\"10.1111/dom.15303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Bariatric metabolic surgery (BMS) is a proven treatment option for patients with both obesity and type 2 diabetes mellitus (T2DM). However, there is a lack of comprehensive reporting on the short-term remission rates of diabetes, and the existing data are inadequate. Hence, this study aimed to investigate the factors that may contribute to diabetes remission (DR) in patients with obesity and T2DM, 3 months after undergoing BMS. Furthermore, our objective was to develop a risk-predicting model using a nomogram.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In total, 389 patients with obesity and T2DM, who had complete preoperative information and underwent either laparoscopic sleeve gastrectomy or laparoscopic gastric bypass surgery between January 2014 and May 2023, were screened in the Chinese Obesity and Metabolic Surgery Database. The patients were randomly divided into a training set (n = 272) and a validation set (n = 117) in a 7:3 ratio. Potential factors for DR were analysed through univariate and multivariate logistic regression analyses and then modelled using a nomogram. The model's performance was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Calibration plots were used to assess prediction accuracy and decision curve analyses were conducted to evaluate the clinical usefulness of the model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Glycated haemoglobin, triglycerides, duration of diabetes, insulin requirement and hypercholesterolaemia were identified as independent factors influencing DR. We have incorporated these five indicators into a nomogram, which has shown good efficacy in both the training cohort (AUC = 0.930) and validation cohort (AUC = 0.838). The calibration plots indicated that the model fits well in both the training and the validation cohorts, and decision curve analyses showed that the model had good clinical applicability.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The prediction model developed in this study holds predictive value for short-term DR following BMS in patients with obesity and T2DM.</p>\\n </section>\\n </div>\",\"PeriodicalId\":158,\"journal\":{\"name\":\"Diabetes, Obesity & Metabolism\",\"volume\":\"26 1\",\"pages\":\"169-179\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes, Obesity & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dom.15303\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dom.15303","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Construction and validation of a nomogram for predicting diabetes remission at 3 months after bariatric surgery in patients with obesity combined with type 2 diabetes mellitus
Aim
Bariatric metabolic surgery (BMS) is a proven treatment option for patients with both obesity and type 2 diabetes mellitus (T2DM). However, there is a lack of comprehensive reporting on the short-term remission rates of diabetes, and the existing data are inadequate. Hence, this study aimed to investigate the factors that may contribute to diabetes remission (DR) in patients with obesity and T2DM, 3 months after undergoing BMS. Furthermore, our objective was to develop a risk-predicting model using a nomogram.
Methods
In total, 389 patients with obesity and T2DM, who had complete preoperative information and underwent either laparoscopic sleeve gastrectomy or laparoscopic gastric bypass surgery between January 2014 and May 2023, were screened in the Chinese Obesity and Metabolic Surgery Database. The patients were randomly divided into a training set (n = 272) and a validation set (n = 117) in a 7:3 ratio. Potential factors for DR were analysed through univariate and multivariate logistic regression analyses and then modelled using a nomogram. The model's performance was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Calibration plots were used to assess prediction accuracy and decision curve analyses were conducted to evaluate the clinical usefulness of the model.
Results
Glycated haemoglobin, triglycerides, duration of diabetes, insulin requirement and hypercholesterolaemia were identified as independent factors influencing DR. We have incorporated these five indicators into a nomogram, which has shown good efficacy in both the training cohort (AUC = 0.930) and validation cohort (AUC = 0.838). The calibration plots indicated that the model fits well in both the training and the validation cohorts, and decision curve analyses showed that the model had good clinical applicability.
Conclusion
The prediction model developed in this study holds predictive value for short-term DR following BMS in patients with obesity and T2DM.
期刊介绍:
Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.