动物、植物和细菌金属硫蛋白中分化的Zn(II)结合亲和力定义了它们在生理pZn下的锌缓冲能力。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Metallomics Pub Date : 2023-10-04 DOI:10.1093/mtomcs/mfad061
Karolina Mosna, Kinga Jurczak, Artur Krężel
{"title":"动物、植物和细菌金属硫蛋白中分化的Zn(II)结合亲和力定义了它们在生理pZn下的锌缓冲能力。","authors":"Karolina Mosna,&nbsp;Kinga Jurczak,&nbsp;Artur Krężel","doi":"10.1093/mtomcs/mfad061","DOIUrl":null,"url":null,"abstract":"<p><p>Metallothioneins (MTs) are small, Cys-rich proteins present in various but not all organisms, from bacteria to humans. They participate in zinc and copper metabolism, toxic metals detoxification, and protection against reactive species. Structurally, they contain one or multiple domains, capable of binding a variable number of metal ions. For experimental convenience, biochemical characterization of MTs is mainly performed on Cd(II)-loaded proteins, frequently omitting or limiting Zn(II) binding features and related functions. Here, by choosing 10 MTs with relatively well-characterized structures from animals, plants, and bacteria, we focused on poorly investigated Zn(II)-to-protein affinities, stability-structure relations, and the speciation of individual complexes. For that purpose, MTs were characterized in terms of stoichiometry, pH-dependent Zn(II) binding, and competition with chromogenic and fluorescent probes. To shed more light on protein folding and its relation with Zn(II) affinity, reactivity of variously Zn(II)-loaded MTs was studied by (5,5'-dithiobis(2-nitrobenzoic acid) oxidation in the presence of mild chelators. The results show that animal and plant MTs, despite their architectural differences, demonstrate the same affinities to Zn(II), varying from nano- to low picomolar range. Bacterial MTs bind Zn(II) more tightly but, importantly, with different affinities from low picomolar to low femtomolar range. The presence of weak, moderate, and tight zinc sites is related to the folding mechanisms and internal electrostatic interactions. Differentiated affinities of all MTs define their zinc buffering capacity required for Zn(II) donation and acceptance at various free Zn(II) concentrations (pZn levels). The data demonstrate critical roles of individual Zn(II)-depleted MT species in zinc buffering processes.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612145/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.\",\"authors\":\"Karolina Mosna,&nbsp;Kinga Jurczak,&nbsp;Artur Krężel\",\"doi\":\"10.1093/mtomcs/mfad061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metallothioneins (MTs) are small, Cys-rich proteins present in various but not all organisms, from bacteria to humans. They participate in zinc and copper metabolism, toxic metals detoxification, and protection against reactive species. Structurally, they contain one or multiple domains, capable of binding a variable number of metal ions. For experimental convenience, biochemical characterization of MTs is mainly performed on Cd(II)-loaded proteins, frequently omitting or limiting Zn(II) binding features and related functions. Here, by choosing 10 MTs with relatively well-characterized structures from animals, plants, and bacteria, we focused on poorly investigated Zn(II)-to-protein affinities, stability-structure relations, and the speciation of individual complexes. For that purpose, MTs were characterized in terms of stoichiometry, pH-dependent Zn(II) binding, and competition with chromogenic and fluorescent probes. To shed more light on protein folding and its relation with Zn(II) affinity, reactivity of variously Zn(II)-loaded MTs was studied by (5,5'-dithiobis(2-nitrobenzoic acid) oxidation in the presence of mild chelators. The results show that animal and plant MTs, despite their architectural differences, demonstrate the same affinities to Zn(II), varying from nano- to low picomolar range. Bacterial MTs bind Zn(II) more tightly but, importantly, with different affinities from low picomolar to low femtomolar range. The presence of weak, moderate, and tight zinc sites is related to the folding mechanisms and internal electrostatic interactions. Differentiated affinities of all MTs define their zinc buffering capacity required for Zn(II) donation and acceptance at various free Zn(II) concentrations (pZn levels). The data demonstrate critical roles of individual Zn(II)-depleted MT species in zinc buffering processes.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612145/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfad061\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfad061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金属硫蛋白(MT)是一种小的富含Cys的蛋白质,存在于从细菌到人类的各种但并非所有生物体中。它们参与锌和铜的代谢、有毒金属的解毒和对活性物质的保护。从结构上讲,它们包含一个或多个结构域,能够结合不同数量的金属离子。为了实验方便,MT的生化表征主要在负载Cd(II)的蛋白质上进行,经常省略或限制Zn(II)结合特征和相关功能。在这里,通过从动物、植物和细菌中选择十种具有相对良好特征结构的MT,我们专注于研究不足的Zn(II)与蛋白质的亲和力、稳定性结构关系和单个复合物的物种形成。为此,MT在化学计量、pH依赖性Zn(II)结合以及与发色和荧光探针的竞争方面进行了表征。为了进一步阐明蛋白质折叠及其与Zn(II)亲和力的关系,在温和螯合剂存在下,通过DTNB氧化研究了不同负载Zn(Ⅱ)的MT的反应性。结果表明,尽管动物和植物MT的结构不同,但它们对Zn(II)的亲和力相同,从纳米到低皮摩尔不等。细菌MT与Zn(II)的结合更紧密,但重要的是,从低皮摩尔到低毫摩尔范围,具有不同的亲和力。弱、中等和紧密锌位点的存在与折叠机制和内部静电相互作用有关。所有MT的差异亲和力定义了它们在各种游离Zn(II)浓度(pZn水平)下提供和接受锌(II)所需的锌缓冲能力。这些数据证明了单个贫锌MT物种在锌缓冲过程中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.

Metallothioneins (MTs) are small, Cys-rich proteins present in various but not all organisms, from bacteria to humans. They participate in zinc and copper metabolism, toxic metals detoxification, and protection against reactive species. Structurally, they contain one or multiple domains, capable of binding a variable number of metal ions. For experimental convenience, biochemical characterization of MTs is mainly performed on Cd(II)-loaded proteins, frequently omitting or limiting Zn(II) binding features and related functions. Here, by choosing 10 MTs with relatively well-characterized structures from animals, plants, and bacteria, we focused on poorly investigated Zn(II)-to-protein affinities, stability-structure relations, and the speciation of individual complexes. For that purpose, MTs were characterized in terms of stoichiometry, pH-dependent Zn(II) binding, and competition with chromogenic and fluorescent probes. To shed more light on protein folding and its relation with Zn(II) affinity, reactivity of variously Zn(II)-loaded MTs was studied by (5,5'-dithiobis(2-nitrobenzoic acid) oxidation in the presence of mild chelators. The results show that animal and plant MTs, despite their architectural differences, demonstrate the same affinities to Zn(II), varying from nano- to low picomolar range. Bacterial MTs bind Zn(II) more tightly but, importantly, with different affinities from low picomolar to low femtomolar range. The presence of weak, moderate, and tight zinc sites is related to the folding mechanisms and internal electrostatic interactions. Differentiated affinities of all MTs define their zinc buffering capacity required for Zn(II) donation and acceptance at various free Zn(II) concentrations (pZn levels). The data demonstrate critical roles of individual Zn(II)-depleted MT species in zinc buffering processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallomics
Metallomics 生物-生化与分子生物学
CiteScore
7.00
自引率
5.90%
发文量
87
审稿时长
1 months
期刊介绍: Global approaches to metals in the biosciences
期刊最新文献
Antisense transcription is associated with expression of metal resistance determinants in Cupriavidus metallidurans CH34. Linking the transcriptome to physiology: response of the proteome of cupriavidus metallidurans to changing metal availability. Natural variation of magnesium stable isotopes in human kidney stones. Formation mechanism of iron-catechol complexes in the colored periostracum of Corbicula spp. X-ray fluorescence mapping of brain tissue reveals the profound extent of trace element dysregulation in stroke pathophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1