Xiaoman Yang, Mingjie Qian, Ying Wang, Zixin Qin, Mei Luo, Guozhong Chen, Chunrong Yi, Yao Ma, Xiaoyun Liu, Zhi Liu
{"title":"MarR蛋白VnrR的巯基修饰通过促进新型硝基还原酶VnrA和NO解毒酶HmpA的表达来调节霍乱弧菌对硝基呋喃的耐药性。","authors":"Xiaoman Yang, Mingjie Qian, Ying Wang, Zixin Qin, Mei Luo, Guozhong Chen, Chunrong Yi, Yao Ma, Xiaoyun Liu, Zhi Liu","doi":"10.1089/ars.2022.0205","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Epidemiological investigations have indicated low resistance toward nitrofuran in clinical isolates, suggesting its potential application in the treatment of multidrug-resistant bacteria. Therefore, it is valuable to explore the mechanism of bacterial resistance to nitrofuran. <b><i>Results:</i></b> Through phenotypic screening of ten multiple antibiotic resistance regulator (MarR) proteins in <i>Vibrio cholerae</i>, we discovered that the regulator VnrR (VCA1058) plays a crucial role in defending against nitrofuran, specifically furazolidone (FZ). Our findings demonstrate that VnrR responds to FZ metabolites, such as hydroxylamine, methylglyoxal, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), β-hydroxyethylhydrazine. Notably, VnrR exhibits reversible responses to the addition of H<sub>2</sub>O<sub>2</sub> through three cysteine residues (Cys180, Cys223, Cys247), leading to the derepression of its upstream gene, <i>vnrA</i> (<i>vca1057</i>). Gene <i>vnrA</i> encodes a novel nitroreductase, which directly contributes to the degradation of FZ. Our study reveals that <i>V. cholerae</i> metabolizes FZ <i>via</i> the <i>vnrR-vnrA</i> system and achieves resistance to FZ with the assistance of the classical reactive oxygen/nitrogen species scavenging pathway. <b><i>Innovation and Conclusion:</i></b> This study represents a significant advancement in understanding the antibiotic resistance mechanisms of <i>V. cholerae</i> and other pathogens. Our findings demonstrate that the MarR family regulator, VnrR, responds to the FZ metabolite H<sub>2</sub>O<sub>2</sub>, facilitating the degradation and detoxification of this antibiotic in a thiol-dependent manner. These insights not only enrich our knowledge of antibiotic resistance but also provide new perspectives for the control and prevention of multidrug-resistant bacteria.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"926-942"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiol-Based Modification of MarR Protein VnrR Regulates Resistance Toward Nitrofuran in <i>Vibrio cholerae</i> By Promoting the Expression of a Novel Nitroreductase VnrA and of NO-Detoxifying Enzyme HmpA.\",\"authors\":\"Xiaoman Yang, Mingjie Qian, Ying Wang, Zixin Qin, Mei Luo, Guozhong Chen, Chunrong Yi, Yao Ma, Xiaoyun Liu, Zhi Liu\",\"doi\":\"10.1089/ars.2022.0205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Epidemiological investigations have indicated low resistance toward nitrofuran in clinical isolates, suggesting its potential application in the treatment of multidrug-resistant bacteria. Therefore, it is valuable to explore the mechanism of bacterial resistance to nitrofuran. <b><i>Results:</i></b> Through phenotypic screening of ten multiple antibiotic resistance regulator (MarR) proteins in <i>Vibrio cholerae</i>, we discovered that the regulator VnrR (VCA1058) plays a crucial role in defending against nitrofuran, specifically furazolidone (FZ). Our findings demonstrate that VnrR responds to FZ metabolites, such as hydroxylamine, methylglyoxal, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), β-hydroxyethylhydrazine. Notably, VnrR exhibits reversible responses to the addition of H<sub>2</sub>O<sub>2</sub> through three cysteine residues (Cys180, Cys223, Cys247), leading to the derepression of its upstream gene, <i>vnrA</i> (<i>vca1057</i>). Gene <i>vnrA</i> encodes a novel nitroreductase, which directly contributes to the degradation of FZ. Our study reveals that <i>V. cholerae</i> metabolizes FZ <i>via</i> the <i>vnrR-vnrA</i> system and achieves resistance to FZ with the assistance of the classical reactive oxygen/nitrogen species scavenging pathway. <b><i>Innovation and Conclusion:</i></b> This study represents a significant advancement in understanding the antibiotic resistance mechanisms of <i>V. cholerae</i> and other pathogens. Our findings demonstrate that the MarR family regulator, VnrR, responds to the FZ metabolite H<sub>2</sub>O<sub>2</sub>, facilitating the degradation and detoxification of this antibiotic in a thiol-dependent manner. These insights not only enrich our knowledge of antibiotic resistance but also provide new perspectives for the control and prevention of multidrug-resistant bacteria.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"926-942\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2022.0205\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2022.0205","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thiol-Based Modification of MarR Protein VnrR Regulates Resistance Toward Nitrofuran in Vibrio cholerae By Promoting the Expression of a Novel Nitroreductase VnrA and of NO-Detoxifying Enzyme HmpA.
Aims: Epidemiological investigations have indicated low resistance toward nitrofuran in clinical isolates, suggesting its potential application in the treatment of multidrug-resistant bacteria. Therefore, it is valuable to explore the mechanism of bacterial resistance to nitrofuran. Results: Through phenotypic screening of ten multiple antibiotic resistance regulator (MarR) proteins in Vibrio cholerae, we discovered that the regulator VnrR (VCA1058) plays a crucial role in defending against nitrofuran, specifically furazolidone (FZ). Our findings demonstrate that VnrR responds to FZ metabolites, such as hydroxylamine, methylglyoxal, hydrogen peroxide (H2O2), β-hydroxyethylhydrazine. Notably, VnrR exhibits reversible responses to the addition of H2O2 through three cysteine residues (Cys180, Cys223, Cys247), leading to the derepression of its upstream gene, vnrA (vca1057). Gene vnrA encodes a novel nitroreductase, which directly contributes to the degradation of FZ. Our study reveals that V. cholerae metabolizes FZ via the vnrR-vnrA system and achieves resistance to FZ with the assistance of the classical reactive oxygen/nitrogen species scavenging pathway. Innovation and Conclusion: This study represents a significant advancement in understanding the antibiotic resistance mechanisms of V. cholerae and other pathogens. Our findings demonstrate that the MarR family regulator, VnrR, responds to the FZ metabolite H2O2, facilitating the degradation and detoxification of this antibiotic in a thiol-dependent manner. These insights not only enrich our knowledge of antibiotic resistance but also provide new perspectives for the control and prevention of multidrug-resistant bacteria.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology