Tianle He, Qingyun Chen, Zhidong Yuan, Yulian Yang, Kai Cao, Ju Luo, Guozhong Dong, Xie Peng and Zhenguo Yang
{"title":"母体高脂肪饮食对胎儿生长、胎盘营养转运蛋白和环状RNA表达谱的影响。","authors":"Tianle He, Qingyun Chen, Zhidong Yuan, Yulian Yang, Kai Cao, Ju Luo, Guozhong Dong, Xie Peng and Zhenguo Yang","doi":"10.1039/D3FO02202A","DOIUrl":null,"url":null,"abstract":"<p >Epidemiological and experimental studies suggest that there is a strong correlation between maternal high-fat diet and fetal–placental development. The current study aims to investigate the effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles in a mouse model. Forty C57BL/6 female mice were randomly assigned to two groups, fed either a control (10% fat for energy) diet (CON) or a high-fat (60% fat for energy) diet (HFD) for 4 weeks before mating and throughout pregnancy, and were killed on day 19.5 of pregnancy. The serum glucose, total cholesterol and low-density lipoprotein, the glucolipid metabolism-related hormones, and the insulin resistance index were significantly increased. High-throughput sequencing showed that differentially expressed circRNAs (DE circRNAs) in the placenta can regulate various biological processes, cellular components, and molecular functions through various energy metabolism pathways, and mmu-let-7g-5p was found to target and bind to multiple DE circRNAs. In addition, this study also predicted that various circRNAs with protein coding functions can regulate maternal placental nutrient transport. In general, the ceRNA (circRNAs–miRNAs–mRNAs) regulatory network of maternal placental nutrient transport constructed in this study is of great significance for further understanding the effect of maternal nutrition on fetal growth in the future.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 20","pages":" 9391-9406"},"PeriodicalIF":5.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles†\",\"authors\":\"Tianle He, Qingyun Chen, Zhidong Yuan, Yulian Yang, Kai Cao, Ju Luo, Guozhong Dong, Xie Peng and Zhenguo Yang\",\"doi\":\"10.1039/D3FO02202A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Epidemiological and experimental studies suggest that there is a strong correlation between maternal high-fat diet and fetal–placental development. The current study aims to investigate the effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles in a mouse model. Forty C57BL/6 female mice were randomly assigned to two groups, fed either a control (10% fat for energy) diet (CON) or a high-fat (60% fat for energy) diet (HFD) for 4 weeks before mating and throughout pregnancy, and were killed on day 19.5 of pregnancy. The serum glucose, total cholesterol and low-density lipoprotein, the glucolipid metabolism-related hormones, and the insulin resistance index were significantly increased. High-throughput sequencing showed that differentially expressed circRNAs (DE circRNAs) in the placenta can regulate various biological processes, cellular components, and molecular functions through various energy metabolism pathways, and mmu-let-7g-5p was found to target and bind to multiple DE circRNAs. In addition, this study also predicted that various circRNAs with protein coding functions can regulate maternal placental nutrient transport. In general, the ceRNA (circRNAs–miRNAs–mRNAs) regulatory network of maternal placental nutrient transport constructed in this study is of great significance for further understanding the effect of maternal nutrition on fetal growth in the future.</p>\",\"PeriodicalId\":77,\"journal\":{\"name\":\"Food & Function\",\"volume\":\" 20\",\"pages\":\" 9391-9406\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food & Function\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/fo/d3fo02202a\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/fo/d3fo02202a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles†
Epidemiological and experimental studies suggest that there is a strong correlation between maternal high-fat diet and fetal–placental development. The current study aims to investigate the effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles in a mouse model. Forty C57BL/6 female mice were randomly assigned to two groups, fed either a control (10% fat for energy) diet (CON) or a high-fat (60% fat for energy) diet (HFD) for 4 weeks before mating and throughout pregnancy, and were killed on day 19.5 of pregnancy. The serum glucose, total cholesterol and low-density lipoprotein, the glucolipid metabolism-related hormones, and the insulin resistance index were significantly increased. High-throughput sequencing showed that differentially expressed circRNAs (DE circRNAs) in the placenta can regulate various biological processes, cellular components, and molecular functions through various energy metabolism pathways, and mmu-let-7g-5p was found to target and bind to multiple DE circRNAs. In addition, this study also predicted that various circRNAs with protein coding functions can regulate maternal placental nutrient transport. In general, the ceRNA (circRNAs–miRNAs–mRNAs) regulatory network of maternal placental nutrient transport constructed in this study is of great significance for further understanding the effect of maternal nutrition on fetal growth in the future.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.