300M钢和C45钢直齿齿轮感应淬火的人工智能建模

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-04-03 DOI:10.1007/s12289-023-01748-1
Sevan Garois, Monzer Daoud, Khalil Traidi, Francisco Chinesta
{"title":"300M钢和C45钢直齿齿轮感应淬火的人工智能建模","authors":"Sevan Garois,&nbsp;Monzer Daoud,&nbsp;Khalil Traidi,&nbsp;Francisco Chinesta","doi":"10.1007/s12289-023-01748-1","DOIUrl":null,"url":null,"abstract":"<div><p>Induction hardening is a heat surface treatment technique widely employed for steel components in order to improve their fatigue life without affecting the metallurgy of the bulk material. The control of the treated components goes through the prediction and the optimization of the induction hardening process parameters. The aim of this work is to propose an approach based on artificial intelligence technique to predict the in-depth hardness profile. For this purpose, experimental tests were first carried out on 300M steel bar and C45 steel spur-gear under single and double frequencies, respectively. Intermediate variables were then generated to be used as input data. Data-driven model based on XGBoost library was finally developed. It was found that the proposed approach predicts with good agreement the hardness profiles and can be used in induction treatment process optimization.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Artificial intelligence modeling of induction contour hardening of 300M steel bar and C45 steel spur-gear\",\"authors\":\"Sevan Garois,&nbsp;Monzer Daoud,&nbsp;Khalil Traidi,&nbsp;Francisco Chinesta\",\"doi\":\"10.1007/s12289-023-01748-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Induction hardening is a heat surface treatment technique widely employed for steel components in order to improve their fatigue life without affecting the metallurgy of the bulk material. The control of the treated components goes through the prediction and the optimization of the induction hardening process parameters. The aim of this work is to propose an approach based on artificial intelligence technique to predict the in-depth hardness profile. For this purpose, experimental tests were first carried out on 300M steel bar and C45 steel spur-gear under single and double frequencies, respectively. Intermediate variables were then generated to be used as input data. Data-driven model based on XGBoost library was finally developed. It was found that the proposed approach predicts with good agreement the hardness profiles and can be used in induction treatment process optimization.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01748-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01748-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

摘要

感应淬火是一种广泛应用于钢构件的表面热处理技术,其目的是在不影响本体材料冶金性能的前提下提高钢构件的疲劳寿命。通过对感应淬火工艺参数的预测和优化,实现对被热处理件的控制。本工作的目的是提出一种基于人工智能技术的深度硬度预测方法。为此,首先对300M钢棒材和C45钢直齿齿轮分别在单频和双频下进行了试验试验。然后生成中间变量作为输入数据。最后开发了基于XGBoost库的数据驱动模型。结果表明,该方法能较好地预测合金的硬度分布,可用于感应淬火工艺优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence modeling of induction contour hardening of 300M steel bar and C45 steel spur-gear

Induction hardening is a heat surface treatment technique widely employed for steel components in order to improve their fatigue life without affecting the metallurgy of the bulk material. The control of the treated components goes through the prediction and the optimization of the induction hardening process parameters. The aim of this work is to propose an approach based on artificial intelligence technique to predict the in-depth hardness profile. For this purpose, experimental tests were first carried out on 300M steel bar and C45 steel spur-gear under single and double frequencies, respectively. Intermediate variables were then generated to be used as input data. Data-driven model based on XGBoost library was finally developed. It was found that the proposed approach predicts with good agreement the hardness profiles and can be used in induction treatment process optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
Analysis of bending behavior of ultra-thin austenitic stainless steel sheets considering surface effect Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing Smart manufacturing platform based on input-output empirical relationships for process monitoring Analysis of wall thickness evolution and forming quality of sheet metal manufactured by wrinkles-free forming method Procedure for optimal infrared heating of PET preform via a simplified 3D Modelling with ventilation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1