{"title":"快速充电锂离子电池石墨阳极的动力学极限。","authors":"Suting Weng, Gaojing Yang, Simeng Zhang, Xiaozhi Liu, Xiao Zhang, Zepeng Liu, Mengyan Cao, Mehmet Nurullah Ateş, Yejing Li, Liquan Chen, Zhaoxiang Wang, Xuefeng Wang","doi":"10.1007/s40820-023-01183-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>The microstructure of graphite upon rapid Li<sup>+</sup> intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.</p>\n </li>\n <li>\n <p>The Li<sup>+</sup> interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li<sup>+</sup> diffusion through the electrode cannot to be neglected for thick graphite electrode.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516836/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries\",\"authors\":\"Suting Weng, Gaojing Yang, Simeng Zhang, Xiaozhi Liu, Xiao Zhang, Zepeng Liu, Mengyan Cao, Mehmet Nurullah Ateş, Yejing Li, Liquan Chen, Zhaoxiang Wang, Xuefeng Wang\",\"doi\":\"10.1007/s40820-023-01183-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>The microstructure of graphite upon rapid Li<sup>+</sup> intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.</p>\\n </li>\\n <li>\\n <p>The Li<sup>+</sup> interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li<sup>+</sup> diffusion through the electrode cannot to be neglected for thick graphite electrode.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01183-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01183-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
Highlights
The microstructure of graphite upon rapid Li+ intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.
The Li+ interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li+ diffusion through the electrode cannot to be neglected for thick graphite electrode.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.