快速充电锂离子电池石墨阳极的动力学极限。

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano-Micro Letters Pub Date : 2023-09-22 DOI:10.1007/s40820-023-01183-6
Suting Weng, Gaojing Yang, Simeng Zhang, Xiaozhi Liu, Xiao Zhang, Zepeng Liu, Mengyan Cao, Mehmet Nurullah Ateş, Yejing Li, Liquan Chen, Zhaoxiang Wang, Xuefeng Wang
{"title":"快速充电锂离子电池石墨阳极的动力学极限。","authors":"Suting Weng,&nbsp;Gaojing Yang,&nbsp;Simeng Zhang,&nbsp;Xiaozhi Liu,&nbsp;Xiao Zhang,&nbsp;Zepeng Liu,&nbsp;Mengyan Cao,&nbsp;Mehmet Nurullah Ateş,&nbsp;Yejing Li,&nbsp;Liquan Chen,&nbsp;Zhaoxiang Wang,&nbsp;Xuefeng Wang","doi":"10.1007/s40820-023-01183-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>The microstructure of graphite upon rapid Li<sup>+</sup> intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.</p>\n </li>\n <li>\n <p>The Li<sup>+</sup> interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li<sup>+</sup> diffusion through the electrode cannot to be neglected for thick graphite electrode.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516836/pdf/","citationCount":"0","resultStr":"{\"title\":\"Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries\",\"authors\":\"Suting Weng,&nbsp;Gaojing Yang,&nbsp;Simeng Zhang,&nbsp;Xiaozhi Liu,&nbsp;Xiao Zhang,&nbsp;Zepeng Liu,&nbsp;Mengyan Cao,&nbsp;Mehmet Nurullah Ateş,&nbsp;Yejing Li,&nbsp;Liquan Chen,&nbsp;Zhaoxiang Wang,&nbsp;Xuefeng Wang\",\"doi\":\"10.1007/s40820-023-01183-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>The microstructure of graphite upon rapid Li<sup>+</sup> intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.</p>\\n </li>\\n <li>\\n <p>The Li<sup>+</sup> interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li<sup>+</sup> diffusion through the electrode cannot to be neglected for thick graphite electrode.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01183-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01183-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

快速充电的锂离子电池是非常需要的,特别是在减少广泛使用的电动汽车的里程焦虑方面。最大的瓶颈之一在于Li+嵌入石墨阳极的缓慢动力学;缓慢的嵌入将导致锂金属镀层、严重的副反应和安全问题。解决这些问题的前提是充分了解石墨在快速嵌入Li+过程中的反应途径和速率决定步骤。在此,我们比较了Li+通过石墨颗粒、界面和电极的扩散,揭示了高电流密度下锂化石墨的结构,并将其与反应动力学和电化学性能联系起来。研究发现,速率决定步骤高度依赖于颗粒尺寸、界面性质和电极配置。Li+扩散不足导致高极化、不完全嵌入和几种分级结构共存。当粒径小于10μm时,界面Li+扩散和电极传输是主要的速率决定步骤。前者高度依赖于电解质化学,并且可以通过构建氟化界面来增强。我们的发现丰富了对快速嵌入Li+过程中石墨结构演变的理解,破解了反应动力学缓慢的瓶颈,并为提高石墨阳极的快速充电性能提供了战略指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries

Highlights

  • The microstructure of graphite upon rapid Li+ intercalation is a mixture of differently staging structures in the macroscopic and microscopic scales due to the incomplete and inhomogeneous intercalation reactions hindered by the sluggish reaction kinetics.

  • The Li+ interface diffusion dominates the reaction kinetics at high rates in thin graphite electrode, while Li+ diffusion through the electrode cannot to be neglected for thick graphite electrode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
期刊最新文献
Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1