打开健身移动应用程序中不满意和满意的驱动因素。

IF 2.5 3区 心理学 Q2 PSYCHOLOGY, MULTIDISCIPLINARY Behavioral Sciences Pub Date : 2023-09-21 DOI:10.3390/bs13090782
Minseong Kim, Sae-Mi Lee
{"title":"打开健身移动应用程序中不满意和满意的驱动因素。","authors":"Minseong Kim,&nbsp;Sae-Mi Lee","doi":"10.3390/bs13090782","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg's two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg's model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.</p>","PeriodicalId":8742,"journal":{"name":"Behavioral Sciences","volume":"13 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525533/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unpacking the Drivers of Dissatisfaction and Satisfaction in a Fitness Mobile Application.\",\"authors\":\"Minseong Kim,&nbsp;Sae-Mi Lee\",\"doi\":\"10.3390/bs13090782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg's two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg's model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.</p>\",\"PeriodicalId\":8742,\"journal\":{\"name\":\"Behavioral Sciences\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525533/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3390/bs13090782\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3390/bs13090782","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了影响健身手机应用程序用户满意度和不满意度的因素。它采用Herzberg的双因素模型,通过文本挖掘将Fitbit移动应用程序的属性分为满意和不满意。之所以选择Fitbit应用程序,是因为它在美国很流行。这项研究分析了谷歌Play商店上Fitbit应用程序的10万条英文评论,并对其属性进行了分类。它确定了三个不满意类别(功能性、兼容性、付费服务)和三个满意类别(满足感、自我监控、自我调节),包括25个子属性。这一分类为用户对健身应用程序的满意或不满提供了深入的见解。这些发现通过应用文本挖掘和Herzberg的模型为健身应用领域做出了贡献。研究人员可以建立在这个基础上,从业者可以利用它来增强应用程序体验。然而,这项研究依赖于用户评论,往往缺乏全面的解释。这种限制可能会阻碍对用户情绪中潜在心理方面的深刻理解。尽管如此,这项研究在为用户和开发人员优化健身应用程序方面取得了进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unpacking the Drivers of Dissatisfaction and Satisfaction in a Fitness Mobile Application.

This research investigates the factors influencing user satisfaction and dissatisfaction in fitness mobile applications. It employs Herzberg's two-factor model through text mining to classify Fitbit mobile app attributes into satisfiers and dissatisfiers. The Fitbit app was chosen due to its prevalence in the United States. The study analyzes 100,000 English reviews from the Fitbit app on the Google Play Store, categorizing attributes. It identifies three dissatisfying categories (functional, compatibility, paid services) and three satisfying categories (gratification, self-monitoring, self-regulation), comprising 25 sub-attributes. This classification offers in-depth insights into what drives user contentment or discontent with fitness apps. The findings contribute to the fitness app domain by applying text-mining and Herzberg's model. Researchers can build upon this foundation, and practitioners can use it to enhance app experiences. However, this research relies on user reviews, often lacking comprehensive explanations. This limitation may hinder a profound understanding of the underlying psychological aspects in user sentiments. Nonetheless, this study takes strides toward optimizing fitness apps for users and developers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioral Sciences
Behavioral Sciences Social Sciences-Development
CiteScore
2.60
自引率
7.70%
发文量
429
审稿时长
11 weeks
期刊最新文献
A Study on Customer Behavior in Online Dating Platforms: Analyzing the Impact of Perceived Value on Enhancing Customer Loyalty. The Effect of Job Skill Demands Under Artificial Intelligence Embeddedness on Employees' Job Performance: A Moderated Double-Edged Sword Model. Exploring the Determinants of Chinese Tourists' Shopping Behavior During Shopping Tourism in Korea. Luxury or Cultural Tourism Activities? The Role of Narcissistic Personality Traits and Travel-Related Motivations. Family Functioning and Cohesion Scale: Validation of a Short Instrument for the Assessment of Intrafamily Relations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1