Tim Meyer, Arnold D Kim, Michael Spivey, Jeff Yoshimi
{"title":"鼠标跟踪性能:一种分析连续鼠标跟踪数据的新方法。","authors":"Tim Meyer, Arnold D Kim, Michael Spivey, Jeff Yoshimi","doi":"10.3758/s13428-023-02210-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse tracking is an important source of data in cognitive science. Most contemporary mouse tracking studies use binary-choice tasks and analyze the curvature or velocity of an individual mouse movement during an experimental trial as participants select from one of the two options. However, there are many types of mouse tracking data available beyond what is produced in a binary-choice task, including naturalistic data from web users. In order to utilize these data, cognitive scientists need tools that are robust to the lack of trial-by-trial structure in most normal computer tasks. We use singular value decomposition (SVD) and detrended fluctuation analysis (DFA) to analyze whole time series of unstructured mouse movement data. We also introduce a new technique for describing two-dimensional mouse traces as complex-valued time series, which allows SVD and DFA to be applied in a straightforward way without losing important spatial information. We find that there is useful information at the level of whole time series, and we use this information to predict performance in an online task. We also discuss how the implications of these results can advance the use of mouse tracking research in cognitive science.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":" ","pages":"4682-4694"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mouse tracking performance: A new approach to analyzing continuous mouse tracking data.\",\"authors\":\"Tim Meyer, Arnold D Kim, Michael Spivey, Jeff Yoshimi\",\"doi\":\"10.3758/s13428-023-02210-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mouse tracking is an important source of data in cognitive science. Most contemporary mouse tracking studies use binary-choice tasks and analyze the curvature or velocity of an individual mouse movement during an experimental trial as participants select from one of the two options. However, there are many types of mouse tracking data available beyond what is produced in a binary-choice task, including naturalistic data from web users. In order to utilize these data, cognitive scientists need tools that are robust to the lack of trial-by-trial structure in most normal computer tasks. We use singular value decomposition (SVD) and detrended fluctuation analysis (DFA) to analyze whole time series of unstructured mouse movement data. We also introduce a new technique for describing two-dimensional mouse traces as complex-valued time series, which allows SVD and DFA to be applied in a straightforward way without losing important spatial information. We find that there is useful information at the level of whole time series, and we use this information to predict performance in an online task. We also discuss how the implications of these results can advance the use of mouse tracking research in cognitive science.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\" \",\"pages\":\"4682-4694\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-023-02210-5\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-023-02210-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Mouse tracking performance: A new approach to analyzing continuous mouse tracking data.
Mouse tracking is an important source of data in cognitive science. Most contemporary mouse tracking studies use binary-choice tasks and analyze the curvature or velocity of an individual mouse movement during an experimental trial as participants select from one of the two options. However, there are many types of mouse tracking data available beyond what is produced in a binary-choice task, including naturalistic data from web users. In order to utilize these data, cognitive scientists need tools that are robust to the lack of trial-by-trial structure in most normal computer tasks. We use singular value decomposition (SVD) and detrended fluctuation analysis (DFA) to analyze whole time series of unstructured mouse movement data. We also introduce a new technique for describing two-dimensional mouse traces as complex-valued time series, which allows SVD and DFA to be applied in a straightforward way without losing important spatial information. We find that there is useful information at the level of whole time series, and we use this information to predict performance in an online task. We also discuss how the implications of these results can advance the use of mouse tracking research in cognitive science.
期刊介绍:
Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.