微纳米水膜实现高性能界面太阳能蒸发。

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano-Micro Letters Pub Date : 2023-09-22 DOI:10.1007/s40820-023-01191-6
Zhen Yu, Yuqing Su, Ruonan Gu, Wei Wu, Yangxi Li, Shaoan Cheng
{"title":"微纳米水膜实现高性能界面太阳能蒸发。","authors":"Zhen Yu,&nbsp;Yuqing Su,&nbsp;Ruonan Gu,&nbsp;Wei Wu,&nbsp;Yangxi Li,&nbsp;Shaoan Cheng","doi":"10.1007/s40820-023-01191-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>Micro–nano water film enhanced interfacial solar evaporator enables a high evaporation rate of 2.18 kg m<sup>−2</sup> h<sup>−1</sup> under 1 sun.</p>\n </li>\n <li>\n <p>An outdoor device with an enhanced condensation design demonstrates a high water production rate of 15.9–19.4 kg kW<sup>−1</sup> h<sup>−1</sup> m<sup>−2</sup>.</p>\n </li>\n <li>\n <p>A multi-objective predictive model is established to assess outdoor water production performance.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516847/pdf/","citationCount":"0","resultStr":"{\"title\":\"Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation\",\"authors\":\"Zhen Yu,&nbsp;Yuqing Su,&nbsp;Ruonan Gu,&nbsp;Wei Wu,&nbsp;Yangxi Li,&nbsp;Shaoan Cheng\",\"doi\":\"10.1007/s40820-023-01191-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n \\n<ul>\\n <li>\\n <p>Micro–nano water film enhanced interfacial solar evaporator enables a high evaporation rate of 2.18 kg m<sup>−2</sup> h<sup>−1</sup> under 1 sun.</p>\\n </li>\\n <li>\\n <p>An outdoor device with an enhanced condensation design demonstrates a high water production rate of 15.9–19.4 kg kW<sup>−1</sup> h<sup>−1</sup> m<sup>−2</sup>.</p>\\n </li>\\n <li>\\n <p>A multi-objective predictive model is established to assess outdoor water production performance.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":48779,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-023-01191-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01191-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

界面太阳能蒸发对解决淡水短缺问题有很大的前景。然而,大多数界面太阳能蒸发器在整个蒸发过程中总是充满水,从而带来不可避免的热损失。在此,我们提出了一种基于微纳米水膜的新型界面蒸发结构,该结构的蒸发性能显著提高,并通过聚吡咯和聚多巴胺涂层的聚二甲基硅氧烷海绵进行了实验验证。基于所制备的海绵的2D蒸发器通过微调界面微纳水膜,在1个太阳下实现了2.18kg m-2 h-1的增强蒸发速率。然后,设计了一种具有增强冷凝功能的自制设备,用于户外清洁水生产。在40天的连续测试中,该装置表现出15.9-19.4kg kW-1 h-1m-2的高产水率(WPR)。基于室外结果,我们进一步建立了一个多目标模型来评估全球WPR。据预测,1平方米的设备每天最多可生产7.8公斤清洁水,可满足3人的日常饮用水需求。最后,这项技术可以通过进一步的大规模应用,极大地缓解当前的水和能源危机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation

Highlights

  • Micro–nano water film enhanced interfacial solar evaporator enables a high evaporation rate of 2.18 kg m−2 h−1 under 1 sun.

  • An outdoor device with an enhanced condensation design demonstrates a high water production rate of 15.9–19.4 kg kW−1 h−1 m−2.

  • A multi-objective predictive model is established to assess outdoor water production performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
期刊最新文献
Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1