Jiwei Chen, Jianchun Tu, Shengyan Huang, Zhenhua Zhu, Yu Tu
{"title":"在CT检查中完全消除接触屏蔽是否合适?基于实验发现的话语。","authors":"Jiwei Chen, Jianchun Tu, Shengyan Huang, Zhenhua Zhu, Yu Tu","doi":"10.1097/HP.0000000000001742","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Through the integration of experimental data and literature, this study examines whether complete elimination of contact shielding during CT examination is warranted, with a particular focus on potential impacts to children's thyroid and pregnant women, as well as limitations associated with contact shielding. Methods: The thermoluminescent dosimeter (TLD) tablets were inserted into the phantom's five organs and tissues. Select fixed exposure, automatic exposure control (AEC), and use contact shielding combined into four experimental modes, with scanning of the phantom's four parts. Obtain the absorbed dose measurements within or outside the FOV. Statistical analysis was conducted using SPSS software. Results: (1) The AEC significantly reduces dose within and outside the FOV, with a dose reduction of 40%-60%. (2) The application of contact shielding outside the FOV significantly reduced the dose adjoin the FOV. (3) Both the use of AEC mode and contact shielding can effectively minimize the dose, with a reduction of 50-80%. (4) The shielding within the FOV may introduce image artifacts or interfere with AEC, the implementation of contact shielding outside FOV provides little reduction in radiation exposure risk through previous literature. (5) Contact shielding exhibits certain drawbacks in all aspects. Conclusion: The utilization of AEC mode in clinical CT should be widely adopted to minimize patient radiation exposure. In general, contact shielding both inside and outside the FOV should be avoided during exposure. However for children under 12 years old with thyroid gland examination, contact shielding could maximally reduce external radiation and may be appropriate. Pregnant women require careful evaluation when considering the use of contact shielding. Contact shielding should not be entirely abandoned.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"46-55"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is It Appropriate to Completely Eliminate Contact Shielding during CT Examination? A Discourse Based on Experimental Findings.\",\"authors\":\"Jiwei Chen, Jianchun Tu, Shengyan Huang, Zhenhua Zhu, Yu Tu\",\"doi\":\"10.1097/HP.0000000000001742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Through the integration of experimental data and literature, this study examines whether complete elimination of contact shielding during CT examination is warranted, with a particular focus on potential impacts to children's thyroid and pregnant women, as well as limitations associated with contact shielding. Methods: The thermoluminescent dosimeter (TLD) tablets were inserted into the phantom's five organs and tissues. Select fixed exposure, automatic exposure control (AEC), and use contact shielding combined into four experimental modes, with scanning of the phantom's four parts. Obtain the absorbed dose measurements within or outside the FOV. Statistical analysis was conducted using SPSS software. Results: (1) The AEC significantly reduces dose within and outside the FOV, with a dose reduction of 40%-60%. (2) The application of contact shielding outside the FOV significantly reduced the dose adjoin the FOV. (3) Both the use of AEC mode and contact shielding can effectively minimize the dose, with a reduction of 50-80%. (4) The shielding within the FOV may introduce image artifacts or interfere with AEC, the implementation of contact shielding outside FOV provides little reduction in radiation exposure risk through previous literature. (5) Contact shielding exhibits certain drawbacks in all aspects. Conclusion: The utilization of AEC mode in clinical CT should be widely adopted to minimize patient radiation exposure. In general, contact shielding both inside and outside the FOV should be avoided during exposure. However for children under 12 years old with thyroid gland examination, contact shielding could maximally reduce external radiation and may be appropriate. Pregnant women require careful evaluation when considering the use of contact shielding. Contact shielding should not be entirely abandoned.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"46-55\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001742\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001742","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Is It Appropriate to Completely Eliminate Contact Shielding during CT Examination? A Discourse Based on Experimental Findings.
Objective: Through the integration of experimental data and literature, this study examines whether complete elimination of contact shielding during CT examination is warranted, with a particular focus on potential impacts to children's thyroid and pregnant women, as well as limitations associated with contact shielding. Methods: The thermoluminescent dosimeter (TLD) tablets were inserted into the phantom's five organs and tissues. Select fixed exposure, automatic exposure control (AEC), and use contact shielding combined into four experimental modes, with scanning of the phantom's four parts. Obtain the absorbed dose measurements within or outside the FOV. Statistical analysis was conducted using SPSS software. Results: (1) The AEC significantly reduces dose within and outside the FOV, with a dose reduction of 40%-60%. (2) The application of contact shielding outside the FOV significantly reduced the dose adjoin the FOV. (3) Both the use of AEC mode and contact shielding can effectively minimize the dose, with a reduction of 50-80%. (4) The shielding within the FOV may introduce image artifacts or interfere with AEC, the implementation of contact shielding outside FOV provides little reduction in radiation exposure risk through previous literature. (5) Contact shielding exhibits certain drawbacks in all aspects. Conclusion: The utilization of AEC mode in clinical CT should be widely adopted to minimize patient radiation exposure. In general, contact shielding both inside and outside the FOV should be avoided during exposure. However for children under 12 years old with thyroid gland examination, contact shielding could maximally reduce external radiation and may be appropriate. Pregnant women require careful evaluation when considering the use of contact shielding. Contact shielding should not be entirely abandoned.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.