Paul Arras, Han Byul Yoo, Lukas Pekar, Christian Schröter, Thomas Clarke, Simon Krah, Daniel Klewinghaus, Vanessa Siegmund, Andreas Evers, Stefan Zielonka
{"title":"一种用于骆驼免疫后具有良好可开发性的人源化VHH结构域的从头高通量分离的文库方法。","authors":"Paul Arras, Han Byul Yoo, Lukas Pekar, Christian Schröter, Thomas Clarke, Simon Krah, Daniel Klewinghaus, Vanessa Siegmund, Andreas Evers, Stefan Zielonka","doi":"10.1080/19420862.2023.2261149","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we generated a novel library approach for high throughput <i>de novo</i> identification of humanized single-domain antibodies following camelid immunization. To achieve this, VHH-derived complementarity-determining regions-3 (CDR3s) obtained from an immunized llama (<i>Lama glama</i>) were grafted onto humanized VHH backbones comprising moderately sequence-diversified CDR1 and CDR2 regions similar to natural immunized and naïve antibody repertoires. Importantly, these CDRs were tailored toward favorable <i>in silico</i> developability properties, by considering human-likeness as well as excluding potential sequence liabilities and predicted immunogenic motifs. Target-specific humanized single-domain antibodies (sdAbs) were readily obtained by yeast surface display. We demonstrate that, by exploiting this approach, high affinity sdAbs with an optimized <i>in silico</i> developability profile can be generated. These sdAbs display favorable biophysical, biochemical, and functional attributes and do not require any further sequence optimization. This approach is generally applicable to any antigen upon camelid immunization and has the potential to significantly accelerate candidate selection and reduce risks and attrition rates in sdAb development.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/7b/KMAB_15_2261149.PMC10540653.pdf","citationCount":"2","resultStr":"{\"title\":\"A library approach for the <i>de novo</i> high-throughput isolation of humanized VHH domains with favorable developability properties following camelid immunization.\",\"authors\":\"Paul Arras, Han Byul Yoo, Lukas Pekar, Christian Schröter, Thomas Clarke, Simon Krah, Daniel Klewinghaus, Vanessa Siegmund, Andreas Evers, Stefan Zielonka\",\"doi\":\"10.1080/19420862.2023.2261149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we generated a novel library approach for high throughput <i>de novo</i> identification of humanized single-domain antibodies following camelid immunization. To achieve this, VHH-derived complementarity-determining regions-3 (CDR3s) obtained from an immunized llama (<i>Lama glama</i>) were grafted onto humanized VHH backbones comprising moderately sequence-diversified CDR1 and CDR2 regions similar to natural immunized and naïve antibody repertoires. Importantly, these CDRs were tailored toward favorable <i>in silico</i> developability properties, by considering human-likeness as well as excluding potential sequence liabilities and predicted immunogenic motifs. Target-specific humanized single-domain antibodies (sdAbs) were readily obtained by yeast surface display. We demonstrate that, by exploiting this approach, high affinity sdAbs with an optimized <i>in silico</i> developability profile can be generated. These sdAbs display favorable biophysical, biochemical, and functional attributes and do not require any further sequence optimization. This approach is generally applicable to any antigen upon camelid immunization and has the potential to significantly accelerate candidate selection and reduce risks and attrition rates in sdAb development.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/7b/KMAB_15_2261149.PMC10540653.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2023.2261149\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2023.2261149","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A library approach for the de novo high-throughput isolation of humanized VHH domains with favorable developability properties following camelid immunization.
In this study, we generated a novel library approach for high throughput de novo identification of humanized single-domain antibodies following camelid immunization. To achieve this, VHH-derived complementarity-determining regions-3 (CDR3s) obtained from an immunized llama (Lama glama) were grafted onto humanized VHH backbones comprising moderately sequence-diversified CDR1 and CDR2 regions similar to natural immunized and naïve antibody repertoires. Importantly, these CDRs were tailored toward favorable in silico developability properties, by considering human-likeness as well as excluding potential sequence liabilities and predicted immunogenic motifs. Target-specific humanized single-domain antibodies (sdAbs) were readily obtained by yeast surface display. We demonstrate that, by exploiting this approach, high affinity sdAbs with an optimized in silico developability profile can be generated. These sdAbs display favorable biophysical, biochemical, and functional attributes and do not require any further sequence optimization. This approach is generally applicable to any antigen upon camelid immunization and has the potential to significantly accelerate candidate selection and reduce risks and attrition rates in sdAb development.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.