Dong Cheol Jang, Seunghwan Choi, Geehoon Chung, Sun Kwang Kim
{"title":"全脑缺血诱导的抑郁症伴随边缘下皮层2/3锥体神经元兴奋性的改变。","authors":"Dong Cheol Jang, Seunghwan Choi, Geehoon Chung, Sun Kwang Kim","doi":"10.5607/en23017","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral ischemia can lead to a range of sequelae, including depression. The pathogenesis of depression involves neuronal change of the medial prefrontal cortex (mPFC). However, how cerebral ischemia-induced changes manifest across subregions and layers of the mPFC is not well understood. In this study, we induced cerebral ischemia in mice via transient bilateral common carotid artery occlusion (tBCCAO) and observed depressive-like behavior. Using whole-cell patch clamp recording, we identified changes in the excitability of pyramidal neurons in the prelimbic cortex (PL) and infralimbic cortex (IL), the subregions of mPFC. Compared to sham control mice, tBCCAO mice showed significantly reduced neuronal excitability in IL layer 2/3 but not layer 5 pyramidal neurons, accompanied by increased rheobase current and decreased input resistance. In contrast, no changes were observed in the excitability of PL layer 2/3 and layer 5 pyramidal neurons. Our results provide a new direction for studying the pathogenesis of depression following ischemic damage by showing that cerebral ischemia induces subregion- and layer-specific changes in the mPFC pyramidal neurons.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 4","pages":"302-312"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/da/bf/en-32-4-302.PMC10569139.pdf","citationCount":"1","resultStr":"{\"title\":\"Global Cerebral Ischemia-induced Depression Accompanies Alteration of Neuronal Excitability in the Infralimbic Cortex Layer 2/3 Pyramidal Neurons.\",\"authors\":\"Dong Cheol Jang, Seunghwan Choi, Geehoon Chung, Sun Kwang Kim\",\"doi\":\"10.5607/en23017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral ischemia can lead to a range of sequelae, including depression. The pathogenesis of depression involves neuronal change of the medial prefrontal cortex (mPFC). However, how cerebral ischemia-induced changes manifest across subregions and layers of the mPFC is not well understood. In this study, we induced cerebral ischemia in mice via transient bilateral common carotid artery occlusion (tBCCAO) and observed depressive-like behavior. Using whole-cell patch clamp recording, we identified changes in the excitability of pyramidal neurons in the prelimbic cortex (PL) and infralimbic cortex (IL), the subregions of mPFC. Compared to sham control mice, tBCCAO mice showed significantly reduced neuronal excitability in IL layer 2/3 but not layer 5 pyramidal neurons, accompanied by increased rheobase current and decreased input resistance. In contrast, no changes were observed in the excitability of PL layer 2/3 and layer 5 pyramidal neurons. Our results provide a new direction for studying the pathogenesis of depression following ischemic damage by showing that cerebral ischemia induces subregion- and layer-specific changes in the mPFC pyramidal neurons.</p>\",\"PeriodicalId\":12263,\"journal\":{\"name\":\"Experimental Neurobiology\",\"volume\":\"32 4\",\"pages\":\"302-312\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/da/bf/en-32-4-302.PMC10569139.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5607/en23017\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en23017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Global Cerebral Ischemia-induced Depression Accompanies Alteration of Neuronal Excitability in the Infralimbic Cortex Layer 2/3 Pyramidal Neurons.
Cerebral ischemia can lead to a range of sequelae, including depression. The pathogenesis of depression involves neuronal change of the medial prefrontal cortex (mPFC). However, how cerebral ischemia-induced changes manifest across subregions and layers of the mPFC is not well understood. In this study, we induced cerebral ischemia in mice via transient bilateral common carotid artery occlusion (tBCCAO) and observed depressive-like behavior. Using whole-cell patch clamp recording, we identified changes in the excitability of pyramidal neurons in the prelimbic cortex (PL) and infralimbic cortex (IL), the subregions of mPFC. Compared to sham control mice, tBCCAO mice showed significantly reduced neuronal excitability in IL layer 2/3 but not layer 5 pyramidal neurons, accompanied by increased rheobase current and decreased input resistance. In contrast, no changes were observed in the excitability of PL layer 2/3 and layer 5 pyramidal neurons. Our results provide a new direction for studying the pathogenesis of depression following ischemic damage by showing that cerebral ischemia induces subregion- and layer-specific changes in the mPFC pyramidal neurons.
期刊介绍:
Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.