Haiyan Liu, Ying He, Xinglin Gao, Tong Li, Baoxin Qiao, Lixuan Tang, Juan Lan, Qian Su, Zhiyan Ruan, Zhaoxin Tang, Lianmei Hu
{"title":"姜黄素减轻AFB1诱导的鸭肾毒性:调节线粒体氧化应激、铁蛋白吞噬和脱铁性贫血。","authors":"Haiyan Liu, Ying He, Xinglin Gao, Tong Li, Baoxin Qiao, Lixuan Tang, Juan Lan, Qian Su, Zhiyan Ruan, Zhaoxin Tang, Lianmei Hu","doi":"10.1007/s12550-023-00504-3","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1), an extremely toxic mycotoxin that extensively contaminates feed and food worldwide, poses a major hazard to poultry and human health. Curcumin, a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Nevertheless, effects of curcumin on the kidneys of ducks exposed to AFB1 remain unclear. Additionally, the underlying mechanism between AFB1 and ferroptosis (based on excessive lipid peroxidation) has not been sufficiently elucidated. This study aimed to investigate the protective effects and potential mechanisms of curcumin against AFB1-induced nephrotoxicity in ducklings. The results indicated that curcumin alleviated AFB1-induced growth retardation and renal distorted structure in ducklings. Concurrently, curcumin inhibited AFB1-induced mitochondrial-mediated oxidative stress by reducing the expression levels of oxidative damage markers malondialdehyde (MDA) and 8-hydroxy-2 deoxyguanosine (8-OHdG) and improved the expression of mitochondria-related antioxidant enzymes and the Nrf2 pathway. Notably, curcumin attenuated iron accumulation in the kidney, inhibited ferritinophagy via the NCOA4 pathway, and balanced iron homeostasis, thereby alleviating AFB1-induced ferroptosis in the kidney. Collectively, our results suggest that curcumin alleviates AFB1-induced nephrotoxicity in ducks by inhibiting mitochondrial-mediated oxidative stress, ferritinophagy, and ferroptosis and provide new evidence for the mechanism of AFB1-induced nephrotoxicity in ducklings treated with curcumin.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":"437-451"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin alleviates AFB1-induced nephrotoxicity in ducks: regulating mitochondrial oxidative stress, ferritinophagy, and ferroptosis.\",\"authors\":\"Haiyan Liu, Ying He, Xinglin Gao, Tong Li, Baoxin Qiao, Lixuan Tang, Juan Lan, Qian Su, Zhiyan Ruan, Zhaoxin Tang, Lianmei Hu\",\"doi\":\"10.1007/s12550-023-00504-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aflatoxin B1 (AFB1), an extremely toxic mycotoxin that extensively contaminates feed and food worldwide, poses a major hazard to poultry and human health. Curcumin, a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Nevertheless, effects of curcumin on the kidneys of ducks exposed to AFB1 remain unclear. Additionally, the underlying mechanism between AFB1 and ferroptosis (based on excessive lipid peroxidation) has not been sufficiently elucidated. This study aimed to investigate the protective effects and potential mechanisms of curcumin against AFB1-induced nephrotoxicity in ducklings. The results indicated that curcumin alleviated AFB1-induced growth retardation and renal distorted structure in ducklings. Concurrently, curcumin inhibited AFB1-induced mitochondrial-mediated oxidative stress by reducing the expression levels of oxidative damage markers malondialdehyde (MDA) and 8-hydroxy-2 deoxyguanosine (8-OHdG) and improved the expression of mitochondria-related antioxidant enzymes and the Nrf2 pathway. Notably, curcumin attenuated iron accumulation in the kidney, inhibited ferritinophagy via the NCOA4 pathway, and balanced iron homeostasis, thereby alleviating AFB1-induced ferroptosis in the kidney. Collectively, our results suggest that curcumin alleviates AFB1-induced nephrotoxicity in ducks by inhibiting mitochondrial-mediated oxidative stress, ferritinophagy, and ferroptosis and provide new evidence for the mechanism of AFB1-induced nephrotoxicity in ducklings treated with curcumin.</p>\",\"PeriodicalId\":19060,\"journal\":{\"name\":\"Mycotoxin Research\",\"volume\":\" \",\"pages\":\"437-451\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycotoxin Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12550-023-00504-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-023-00504-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Curcumin alleviates AFB1-induced nephrotoxicity in ducks: regulating mitochondrial oxidative stress, ferritinophagy, and ferroptosis.
Aflatoxin B1 (AFB1), an extremely toxic mycotoxin that extensively contaminates feed and food worldwide, poses a major hazard to poultry and human health. Curcumin, a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Nevertheless, effects of curcumin on the kidneys of ducks exposed to AFB1 remain unclear. Additionally, the underlying mechanism between AFB1 and ferroptosis (based on excessive lipid peroxidation) has not been sufficiently elucidated. This study aimed to investigate the protective effects and potential mechanisms of curcumin against AFB1-induced nephrotoxicity in ducklings. The results indicated that curcumin alleviated AFB1-induced growth retardation and renal distorted structure in ducklings. Concurrently, curcumin inhibited AFB1-induced mitochondrial-mediated oxidative stress by reducing the expression levels of oxidative damage markers malondialdehyde (MDA) and 8-hydroxy-2 deoxyguanosine (8-OHdG) and improved the expression of mitochondria-related antioxidant enzymes and the Nrf2 pathway. Notably, curcumin attenuated iron accumulation in the kidney, inhibited ferritinophagy via the NCOA4 pathway, and balanced iron homeostasis, thereby alleviating AFB1-induced ferroptosis in the kidney. Collectively, our results suggest that curcumin alleviates AFB1-induced nephrotoxicity in ducks by inhibiting mitochondrial-mediated oxidative stress, ferritinophagy, and ferroptosis and provide new evidence for the mechanism of AFB1-induced nephrotoxicity in ducklings treated with curcumin.
期刊介绍:
Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields:
- Ecology and genetics of mycotoxin formation
- Mode of action of mycotoxins, metabolism and toxicology
- Agricultural production and mycotoxins
- Human and animal health aspects, including exposure studies and risk assessment
- Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins
- Environmental safety and technology-related aspects of mycotoxins
- Chemistry, synthesis and analysis.