Nora-Josefin Breutigam, Daniel Christopher Hoinkiss, Simon Konstandin, Mareike Alicja Buck, Amnah Mahroo, Klaus Eickel, Federico von Samson-Himmelstjerna, Matthias Günther
{"title":"时间编码动脉旋转标记成像中的受试者特定时间适应。","authors":"Nora-Josefin Breutigam, Daniel Christopher Hoinkiss, Simon Konstandin, Mareike Alicja Buck, Amnah Mahroo, Klaus Eickel, Federico von Samson-Himmelstjerna, Matthias Günther","doi":"10.1007/s10334-023-01121-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).</p><p><strong>Material and methods: </strong>Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.</p><p><strong>Results: </strong>The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.</p><p><strong>Discussion: </strong>A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"53-68"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876770/pdf/","citationCount":"0","resultStr":"{\"title\":\"Subject-specific timing adaption in time-encoded arterial spin labeling imaging.\",\"authors\":\"Nora-Josefin Breutigam, Daniel Christopher Hoinkiss, Simon Konstandin, Mareike Alicja Buck, Amnah Mahroo, Klaus Eickel, Federico von Samson-Himmelstjerna, Matthias Günther\",\"doi\":\"10.1007/s10334-023-01121-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).</p><p><strong>Material and methods: </strong>Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.</p><p><strong>Results: </strong>The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.</p><p><strong>Discussion: </strong>A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"53-68\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876770/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-023-01121-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-023-01121-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Subject-specific timing adaption in time-encoded arterial spin labeling imaging.
Objectives: One challenge in arterial spin labeling (ASL) is the high variability of arterial transit times (ATT), which causes associated arterial transit delay (ATD) artifacts. In patients with pathological changes, these artifacts occur when post-labeling delay (PLD) and bolus durations are not optimally matched to the subject, resulting in difficult quantification of cerebral blood flow (CBF) and ATT. This is also true for the free lunch approach in Hadamard-encoded pseudocontinuous ASL (H-pCASL).
Material and methods: Five healthy volunteers were scanned with a 3 T MR-system. pCASL-subbolus timing was adjusted individually by the developed adaptive Walsh-ordered pCASL sequence and an automatic feedback algorithm. The quantification results for CBF and ATT and the respective standard deviations were compared with results obtained using recommended timings and intentionally suboptimal timings.
Results: The algorithm individually adjusted the pCASL-subbolus PLD for each subject within the range of recommended timing for healthy subjects, with a mean intra-subject adjustment deviation of 47.15 ms for single-shot and 44.5 ms for segmented acquisition in three repetitions.
Discussion: A first positive assessment of the results was performed on healthy volunteers. The extent to which the results can be transferred to patients and are of benefit must be investigated in follow-up studies.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.