Herpetetrone纳米混悬剂提高了药物的溶解度和生物利用度,以提高抗肝纤维化的效果。

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED Journal of microencapsulation Pub Date : 2023-12-01 Epub Date: 2023-11-09 DOI:10.1080/02652048.2023.2258974
Yuji Zhong, Lingyu Hang, Fang Wang, Baode Shen, Chengying Shen, Yuye Xue, Haiqiang Jia, Liqiang Wang, Hailong Yuan
{"title":"Herpetetrone纳米混悬剂提高了药物的溶解度和生物利用度,以提高抗肝纤维化的效果。","authors":"Yuji Zhong, Lingyu Hang, Fang Wang, Baode Shen, Chengying Shen, Yuye Xue, Haiqiang Jia, Liqiang Wang, Hailong Yuan","doi":"10.1080/02652048.2023.2258974","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to enhance the dissolution rate and oral bioavailability of herpetetrone (HPT) by preparing nanosuspensions (NSs) and evaluate the changes in its anti-hepatic fibrosis effect. Herpetetrone nanosuspension (HPT-NS) was prepared using the ultrasound-precipitation technique, and characterised on the basis of mean diameter, zeta potential (ZP), encapsulation efficiency percent (EE%), scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD). In addition, the pharmacokinetics and anti-hepatic fibrosis activity were evaluated. HPT-NS prepared with the optimised formulation was found to be spherical with mean diameter of 177.48 ± 6.13 nm, polydispersity index (PDI) of 0.108 ± 0.002 and ZP of -17.28 ± 2.02 mV. The EE (m/m, %) was 83.25 ± 0.27. XRPD analyses confirmed that the amorphous state of HPT in HPT-NS remained unchanged. The dissolution rate of HPT-NS was significantly higher than that of HPT coarse suspensions (HPT-CSs). Following oral administration, <i>C</i><sub>max</sub> and AUC<sub>0-</sub><i><sub>t</sub></i> of HPT-NS showed a significant increase (<i>p</i> < 0.05). <i>In vitro</i>, HPT inhibited the proliferation of HSC-T6 cells and induced apoptosis by up-regulating the expression of Bax proteins and down-regulating the expression of Bcl-2 and TGF-β1 proteins. Compared with HPT-CS, HPT-NS exhibited a more pronounced anti-fibrotic effect. HPT-NS, as a new drug formulation designed to improve the solubility and bioavailability of the drug, shows promising potential in enhancing the anti-liver fibrosis effect.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"587-598"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Herpetetrone nanosuspensions enhance drug solubility and bioavailability to improve anti-hepatic fibrosis effects.\",\"authors\":\"Yuji Zhong, Lingyu Hang, Fang Wang, Baode Shen, Chengying Shen, Yuye Xue, Haiqiang Jia, Liqiang Wang, Hailong Yuan\",\"doi\":\"10.1080/02652048.2023.2258974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study was to enhance the dissolution rate and oral bioavailability of herpetetrone (HPT) by preparing nanosuspensions (NSs) and evaluate the changes in its anti-hepatic fibrosis effect. Herpetetrone nanosuspension (HPT-NS) was prepared using the ultrasound-precipitation technique, and characterised on the basis of mean diameter, zeta potential (ZP), encapsulation efficiency percent (EE%), scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD). In addition, the pharmacokinetics and anti-hepatic fibrosis activity were evaluated. HPT-NS prepared with the optimised formulation was found to be spherical with mean diameter of 177.48 ± 6.13 nm, polydispersity index (PDI) of 0.108 ± 0.002 and ZP of -17.28 ± 2.02 mV. The EE (m/m, %) was 83.25 ± 0.27. XRPD analyses confirmed that the amorphous state of HPT in HPT-NS remained unchanged. The dissolution rate of HPT-NS was significantly higher than that of HPT coarse suspensions (HPT-CSs). Following oral administration, <i>C</i><sub>max</sub> and AUC<sub>0-</sub><i><sub>t</sub></i> of HPT-NS showed a significant increase (<i>p</i> < 0.05). <i>In vitro</i>, HPT inhibited the proliferation of HSC-T6 cells and induced apoptosis by up-regulating the expression of Bax proteins and down-regulating the expression of Bcl-2 and TGF-β1 proteins. Compared with HPT-CS, HPT-NS exhibited a more pronounced anti-fibrotic effect. HPT-NS, as a new drug formulation designed to improve the solubility and bioavailability of the drug, shows promising potential in enhancing the anti-liver fibrosis effect.</p>\",\"PeriodicalId\":16391,\"journal\":{\"name\":\"Journal of microencapsulation\",\"volume\":\" \",\"pages\":\"587-598\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microencapsulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/02652048.2023.2258974\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2258974","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在通过制备纳米混悬剂(NSs)来提高Herpetetrone(HPT)的溶出率和口服生物利用度,并评价其抗肝纤维化作用的变化。方法:采用超声沉淀技术制备海贝酮纳米混悬液,并通过平均粒径、ζ电位、包封率、扫描电镜、X射线粉末衍射等方法对其进行表征。此外,还对其药代动力学和抗肝纤维化活性进行了评价。结果:用优化配方制备的HPT NSs为球形,平均直径为177.48 ± 6.13 nm,多分散指数(PDI)为0.108 ± 0.002和-17.28的ZP ± 2.02 mV。EE(m/m,%)为83.25 ± 0.27.XRPD分析证实HPT NSs中HPT的非晶态保持不变。HPT NSs的溶解速率明显高于HPT粗悬浮液(HPT-CS)。口服给药后,HPT NSs的Cmax和AUC0-t显著增加(P 结论:HPT NSs作为一种旨在提高药物溶解度和生物利用度的新药,在增强抗肝纤维化作用方面显示出良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Herpetetrone nanosuspensions enhance drug solubility and bioavailability to improve anti-hepatic fibrosis effects.

The aim of this study was to enhance the dissolution rate and oral bioavailability of herpetetrone (HPT) by preparing nanosuspensions (NSs) and evaluate the changes in its anti-hepatic fibrosis effect. Herpetetrone nanosuspension (HPT-NS) was prepared using the ultrasound-precipitation technique, and characterised on the basis of mean diameter, zeta potential (ZP), encapsulation efficiency percent (EE%), scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD). In addition, the pharmacokinetics and anti-hepatic fibrosis activity were evaluated. HPT-NS prepared with the optimised formulation was found to be spherical with mean diameter of 177.48 ± 6.13 nm, polydispersity index (PDI) of 0.108 ± 0.002 and ZP of -17.28 ± 2.02 mV. The EE (m/m, %) was 83.25 ± 0.27. XRPD analyses confirmed that the amorphous state of HPT in HPT-NS remained unchanged. The dissolution rate of HPT-NS was significantly higher than that of HPT coarse suspensions (HPT-CSs). Following oral administration, Cmax and AUC0-t of HPT-NS showed a significant increase (p < 0.05). In vitro, HPT inhibited the proliferation of HSC-T6 cells and induced apoptosis by up-regulating the expression of Bax proteins and down-regulating the expression of Bcl-2 and TGF-β1 proteins. Compared with HPT-CS, HPT-NS exhibited a more pronounced anti-fibrotic effect. HPT-NS, as a new drug formulation designed to improve the solubility and bioavailability of the drug, shows promising potential in enhancing the anti-liver fibrosis effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
期刊最新文献
Her-2 nanobody modified cisplatin nanoparticles for precise chemotherapy of colon cancer. Novel formulation of curcumin-loaded chlorhexidine drug combined with gold nanoparticles for effective therapeutic agent against urinary tract infections. Optimisation of albendazole delivery and assessment of anticancer potential in hepatocellular carcinoma (HepG2 cells) using surface modified nanostructured lipid carriers. Development, QbD-based optimisation, in-vivo pharmacokinetics, and ex-vivo evaluation of Eudragit® RS 100 loaded flurbiprofen nanoparticles for oral drug delivery. Spray-dried chitosan oligosaccharide microparticles with polyvinyl alcohol-based dispersions for improved gefitinib solubility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1