白芷多糖/魔芋葡甘聚糖复合水凝胶的表征与评价。

IF 3.1 4区 医学 Q2 BIOPHYSICS Journal of Applied Biomaterials & Functional Materials Pub Date : 2023-01-01 DOI:10.1177/22808000231176202
Jin Shang, Liangliang Duan, Weimin Zhang, Xiangwen Li, Cheng Ma, Bao Xin
{"title":"白芷多糖/魔芋葡甘聚糖复合水凝胶的表征与评价。","authors":"Jin Shang,&nbsp;Liangliang Duan,&nbsp;Weimin Zhang,&nbsp;Xiangwen Li,&nbsp;Cheng Ma,&nbsp;Bao Xin","doi":"10.1177/22808000231176202","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bletilla striata</i> polysaccharide (BSP) is effective for wound healing and has important applications in health care. A series of blend hydrogels was designed with BSP and konjac glucomannan (KGM) in this study to overcome the deficient mechanical performance caused by the excessive dissolution of BSP without affecting its physiological activity. The interplay between them, as well as the effects of KGM concentration on the physical properties and microstructures of hydrogels, were also explored. It was proved that the frame of the hydrogel was primarily formed by KGM. BSP was dispersed uniformly and linked to KGM through hydrogen bonding, which effectively improved the physical properties, such as increasing the water-holding capacity, improving the swelling degree, and enhancing the mechanical properties. Blend hydrogel BK2-2 (containing 1.0% BSP and 1.0% KGM, w/v) was found to be the optimal formulation based on the thermal stability and microstructure, which was used for further research. <i>In vitro</i> experiments revealed the L929 cell proliferative effects of the blend hydrogel, and no difference was found with BSP sponge extract after 72 h of exposure. <i>In vivo</i> animal studies indicated that the BK2-2 accelerated wound healing compared with the control group; however, no difference was found with dressings only made of BSP. These results demonstrated that KGM improved the physical properties of BSP-based material without negatively affecting its physiological properties. Also, the BSP/KGM blend hydrogel had good comprehensive properties and is expected to be used as a wound healing material in the future.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and evaluation of <i>Bletilla striata</i> polysaccharide/konjac glucomannan blend hydrogel for wound healing.\",\"authors\":\"Jin Shang,&nbsp;Liangliang Duan,&nbsp;Weimin Zhang,&nbsp;Xiangwen Li,&nbsp;Cheng Ma,&nbsp;Bao Xin\",\"doi\":\"10.1177/22808000231176202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Bletilla striata</i> polysaccharide (BSP) is effective for wound healing and has important applications in health care. A series of blend hydrogels was designed with BSP and konjac glucomannan (KGM) in this study to overcome the deficient mechanical performance caused by the excessive dissolution of BSP without affecting its physiological activity. The interplay between them, as well as the effects of KGM concentration on the physical properties and microstructures of hydrogels, were also explored. It was proved that the frame of the hydrogel was primarily formed by KGM. BSP was dispersed uniformly and linked to KGM through hydrogen bonding, which effectively improved the physical properties, such as increasing the water-holding capacity, improving the swelling degree, and enhancing the mechanical properties. Blend hydrogel BK2-2 (containing 1.0% BSP and 1.0% KGM, w/v) was found to be the optimal formulation based on the thermal stability and microstructure, which was used for further research. <i>In vitro</i> experiments revealed the L929 cell proliferative effects of the blend hydrogel, and no difference was found with BSP sponge extract after 72 h of exposure. <i>In vivo</i> animal studies indicated that the BK2-2 accelerated wound healing compared with the control group; however, no difference was found with dressings only made of BSP. These results demonstrated that KGM improved the physical properties of BSP-based material without negatively affecting its physiological properties. Also, the BSP/KGM blend hydrogel had good comprehensive properties and is expected to be used as a wound healing material in the future.</p>\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/22808000231176202\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/22808000231176202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

白芷多糖(BSP)对伤口愈合有效,在医疗保健中有重要应用。本研究在不影响其生理活性的情况下,用BSP和魔芋葡甘聚糖(KGM)设计了一系列共混水凝胶,以克服BSP过度溶解导致的力学性能不足。还探讨了它们之间的相互作用,以及KGM浓度对水凝胶物理性能和微观结构的影响。实验证明,水凝胶的骨架主要由KGM形成。BSP分散均匀,通过氢键与KGM连接,有效地改善了其物理性能,如增加了保水能力、提高了溶胀度、增强了力学性能。基于热稳定性和微观结构,发现混合水凝胶BK2-2(含有1.0%BSP和1.0%KGM,w/v)是最佳配方,可用于进一步研究。体外实验揭示了混合水凝胶对L929细胞的增殖作用,并且在72小时后与BSP海绵提取物没有发现差异 暴露小时。体内动物研究表明,与对照组相比,BK2-2加速了伤口愈合;然而,仅由BSP制成的敷料没有发现差异。这些结果表明,KGM改善了BSP基材料的物理性能,而不会对其生理性能产生负面影响。此外,BSP/KGM共混水凝胶具有良好的综合性能,有望在未来用作伤口愈合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and evaluation of Bletilla striata polysaccharide/konjac glucomannan blend hydrogel for wound healing.

Bletilla striata polysaccharide (BSP) is effective for wound healing and has important applications in health care. A series of blend hydrogels was designed with BSP and konjac glucomannan (KGM) in this study to overcome the deficient mechanical performance caused by the excessive dissolution of BSP without affecting its physiological activity. The interplay between them, as well as the effects of KGM concentration on the physical properties and microstructures of hydrogels, were also explored. It was proved that the frame of the hydrogel was primarily formed by KGM. BSP was dispersed uniformly and linked to KGM through hydrogen bonding, which effectively improved the physical properties, such as increasing the water-holding capacity, improving the swelling degree, and enhancing the mechanical properties. Blend hydrogel BK2-2 (containing 1.0% BSP and 1.0% KGM, w/v) was found to be the optimal formulation based on the thermal stability and microstructure, which was used for further research. In vitro experiments revealed the L929 cell proliferative effects of the blend hydrogel, and no difference was found with BSP sponge extract after 72 h of exposure. In vivo animal studies indicated that the BK2-2 accelerated wound healing compared with the control group; however, no difference was found with dressings only made of BSP. These results demonstrated that KGM improved the physical properties of BSP-based material without negatively affecting its physiological properties. Also, the BSP/KGM blend hydrogel had good comprehensive properties and is expected to be used as a wound healing material in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
期刊最新文献
Vanillin loaded-physically crosslinked PVA/chitosan/itaconic membranes for topical wound healing applications Physicomechanical, morphological and tribo-deformation characteristics of lightweight WC/AZ31B Mg-matrix biocomposites for hip joint applications Effects of different antiviral mouthwashes on the surface roughness, hardness, and color stability of composite CAD/CAM materials In vitro assessment of Momordica charantia/Hypericum perforatum oils loaded PCL/Collagen fibers: Novel scaffold for tissue engineering. In vitro chemical treatment of silk increases the expression of pro-inflammatory factors and facilitates degradation in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1