{"title":"人类瘦素受体基因(rs1137101;Gln223Arg)多态性与印度人群代谢综合征患者循环瘦素的相关性。","authors":"Deepak Parchwani, Sagar Dholariya, Digishaben D Patel, Ashishkumar Agravatt, Jayant Uperia, Tanishk Parchwani, Ragini Singh, Madhuri Radadiya, Yash Desai","doi":"10.1007/s12291-022-01065-5","DOIUrl":null,"url":null,"abstract":"<p><p>Phenotypic expression of metabolic syndrome is precipitated by environmental variables along with the individual genetic susceptibility to the obesogenic environment and growing body of evidence suggest a paramount role of adipocytokines. Therefore, identifying the genetic influence on circulation leptin levels and clarifying genotype-phenotype correlation of rs1137101 {Leptin receptor gene (LEPR) Gln223Arg (Q223R; A668G)} in metabolic syndrome were the primary objective of this study. A total of 447 adult participants, including 214 metabolic syndrome patients and 233 healthy controls, were genotyped using polymerase chain reaction-restriction fragment length polymorphism method to unravel the effects of genetic risk loci {Leptin receptor gene; Gln223Arg (Q223R; A668G); rs1137101} on the occurrence of metabolic syndrome in consort with circulation leptin levels. Suitable descriptive statistics was used for different variables. The genotype frequencies were found to be in Hardy-Weinberg equilibrium for both cases (p > 0.2722) as well as in controls (p > 0.2331). However, genotype (x2: 11.26, 2 d.f. p = 0.0036) and allele distribution (x2: 10.51, 2 d.f. p: 0.0012) of the LEPR Gln223Arg (Q223R; A668G) differed significantly between cases and controls. Gln/Arg genotype (OR = 1.6099; 95% CI = 1.0847-2.3893; p value = 0.0181), Arg/Arg genotype (OR = 2.8121; 95% CI = 1.4103-5.6074; p value = 0.0033) and R allele (OR = 1.5875; 95% CI = 1.1996-2.1008; p value = 0.0012) were significantly associated with increased risk of metabolic syndrome in univariate analysis. Further a multivariate logistic regression adjusted for potential confounders showed that Arg/Arg genotype (OR = 1.9; 95% CI = 1.271-2.639; p-value < 0.05) and Gln/Arg (OR: 1.3; 95% CI = 0.873-2.034; p value < 0.05) have a significant risk for the occurrence of the metabolic syndrome. A progressive increase in the serum leptin levels from major homozygous alleles to minor homozygous alleles were observed indicating that rs1137101 modify the serum leptin concentrations in patients with metabolic syndrome. These findings provide enough evidence of a significant association of LEPR Gln223Arg (Q223R; A668G) polymorphism in the LepR gene in Indian patients with increased risk of metabolic syndrome for R allele and Arg/Arg homozygote. Thus, rs1137101 might be a pleiotropic locus for metabolic syndrome and its components in studied population.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 4","pages":"505-511"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association of the Human Leptin Receptor Gene (rs1137101; Gln223Arg) Polymorphism and Circulating Leptin in Patients with Metabolic Syndrome in the Indian Population.\",\"authors\":\"Deepak Parchwani, Sagar Dholariya, Digishaben D Patel, Ashishkumar Agravatt, Jayant Uperia, Tanishk Parchwani, Ragini Singh, Madhuri Radadiya, Yash Desai\",\"doi\":\"10.1007/s12291-022-01065-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenotypic expression of metabolic syndrome is precipitated by environmental variables along with the individual genetic susceptibility to the obesogenic environment and growing body of evidence suggest a paramount role of adipocytokines. Therefore, identifying the genetic influence on circulation leptin levels and clarifying genotype-phenotype correlation of rs1137101 {Leptin receptor gene (LEPR) Gln223Arg (Q223R; A668G)} in metabolic syndrome were the primary objective of this study. A total of 447 adult participants, including 214 metabolic syndrome patients and 233 healthy controls, were genotyped using polymerase chain reaction-restriction fragment length polymorphism method to unravel the effects of genetic risk loci {Leptin receptor gene; Gln223Arg (Q223R; A668G); rs1137101} on the occurrence of metabolic syndrome in consort with circulation leptin levels. Suitable descriptive statistics was used for different variables. The genotype frequencies were found to be in Hardy-Weinberg equilibrium for both cases (p > 0.2722) as well as in controls (p > 0.2331). However, genotype (x2: 11.26, 2 d.f. p = 0.0036) and allele distribution (x2: 10.51, 2 d.f. p: 0.0012) of the LEPR Gln223Arg (Q223R; A668G) differed significantly between cases and controls. Gln/Arg genotype (OR = 1.6099; 95% CI = 1.0847-2.3893; p value = 0.0181), Arg/Arg genotype (OR = 2.8121; 95% CI = 1.4103-5.6074; p value = 0.0033) and R allele (OR = 1.5875; 95% CI = 1.1996-2.1008; p value = 0.0012) were significantly associated with increased risk of metabolic syndrome in univariate analysis. Further a multivariate logistic regression adjusted for potential confounders showed that Arg/Arg genotype (OR = 1.9; 95% CI = 1.271-2.639; p-value < 0.05) and Gln/Arg (OR: 1.3; 95% CI = 0.873-2.034; p value < 0.05) have a significant risk for the occurrence of the metabolic syndrome. A progressive increase in the serum leptin levels from major homozygous alleles to minor homozygous alleles were observed indicating that rs1137101 modify the serum leptin concentrations in patients with metabolic syndrome. These findings provide enough evidence of a significant association of LEPR Gln223Arg (Q223R; A668G) polymorphism in the LepR gene in Indian patients with increased risk of metabolic syndrome for R allele and Arg/Arg homozygote. Thus, rs1137101 might be a pleiotropic locus for metabolic syndrome and its components in studied population.</p>\",\"PeriodicalId\":13280,\"journal\":{\"name\":\"Indian Journal of Clinical Biochemistry\",\"volume\":\"38 4\",\"pages\":\"505-511\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10516842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Clinical Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12291-022-01065-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Clinical Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12291-022-01065-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Association of the Human Leptin Receptor Gene (rs1137101; Gln223Arg) Polymorphism and Circulating Leptin in Patients with Metabolic Syndrome in the Indian Population.
Phenotypic expression of metabolic syndrome is precipitated by environmental variables along with the individual genetic susceptibility to the obesogenic environment and growing body of evidence suggest a paramount role of adipocytokines. Therefore, identifying the genetic influence on circulation leptin levels and clarifying genotype-phenotype correlation of rs1137101 {Leptin receptor gene (LEPR) Gln223Arg (Q223R; A668G)} in metabolic syndrome were the primary objective of this study. A total of 447 adult participants, including 214 metabolic syndrome patients and 233 healthy controls, were genotyped using polymerase chain reaction-restriction fragment length polymorphism method to unravel the effects of genetic risk loci {Leptin receptor gene; Gln223Arg (Q223R; A668G); rs1137101} on the occurrence of metabolic syndrome in consort with circulation leptin levels. Suitable descriptive statistics was used for different variables. The genotype frequencies were found to be in Hardy-Weinberg equilibrium for both cases (p > 0.2722) as well as in controls (p > 0.2331). However, genotype (x2: 11.26, 2 d.f. p = 0.0036) and allele distribution (x2: 10.51, 2 d.f. p: 0.0012) of the LEPR Gln223Arg (Q223R; A668G) differed significantly between cases and controls. Gln/Arg genotype (OR = 1.6099; 95% CI = 1.0847-2.3893; p value = 0.0181), Arg/Arg genotype (OR = 2.8121; 95% CI = 1.4103-5.6074; p value = 0.0033) and R allele (OR = 1.5875; 95% CI = 1.1996-2.1008; p value = 0.0012) were significantly associated with increased risk of metabolic syndrome in univariate analysis. Further a multivariate logistic regression adjusted for potential confounders showed that Arg/Arg genotype (OR = 1.9; 95% CI = 1.271-2.639; p-value < 0.05) and Gln/Arg (OR: 1.3; 95% CI = 0.873-2.034; p value < 0.05) have a significant risk for the occurrence of the metabolic syndrome. A progressive increase in the serum leptin levels from major homozygous alleles to minor homozygous alleles were observed indicating that rs1137101 modify the serum leptin concentrations in patients with metabolic syndrome. These findings provide enough evidence of a significant association of LEPR Gln223Arg (Q223R; A668G) polymorphism in the LepR gene in Indian patients with increased risk of metabolic syndrome for R allele and Arg/Arg homozygote. Thus, rs1137101 might be a pleiotropic locus for metabolic syndrome and its components in studied population.
期刊介绍:
The primary mission of the journal is to promote improvement in the health and well-being of community through the development and practice of clinical biochemistry and dissemination of knowledge and recent advances in this discipline among professionals, diagnostics industry, government and non-government organizations. Indian Journal of Clinical Biochemistry (IJCB) publishes peer reviewed articles that contribute to the existing knowledge in all fields of Clinical biochemistry, either experimental or theoretical, particularly deal with the applications of biochemistry, molecular biology, genetics, biotechnology, and immunology to the diagnosis, treatment, monitoring and prevention of human diseases. The articles published also include those covering the analytical and molecular diagnostic techniques, instrumentation, data processing, quality assurance and accreditation aspects of the clinical investigations in which chemistry has played a major role, or laboratory animal studies with biochemical and clinical relevance.