Dirkjan Schokker, Soumya K Kar, Els Willems, Alex Bossers, Ruud A Dekker, Alfons J M Jansman
{"title":"在临床健康仔猪断奶后,日粮中补充氧化锌可调节肠道功能。","authors":"Dirkjan Schokker, Soumya K Kar, Els Willems, Alex Bossers, Ruud A Dekker, Alfons J M Jansman","doi":"10.1186/s40104-023-00925-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To improve our understanding of host and intestinal microbiome interaction, this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets. In study 1, piglets received either a high concentration of zinc (Zn) as zinc oxide (ZnO, Zn, 2,690 mg/kg) or a low Zn concentration (100 mg/kg) in the diet during the post weaning period (d 14-23). The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated. In study 2, the impact of timing of the dietary zinc intervention was investigated, i.e., between d 0-14 and/or d 14-23 post weaning, and the consecutive effects on the piglet's intestinal functionality, here referring to microbiota composition and diversity and gene expression profiles.</p><p><strong>Results: </strong>Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration ZnO content. A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change, where mainly the commensals inter-changed. In the immediate post weaning period, i.e., d 0-14, the highest number of differentially expressed genes (DEGs) in intestinal tissue were observed between animals receiving a diet with a low or high concentration ZnO content, i.e., 23 DEGs in jejunal tissue and 11 DEGs in ileal tissue. These genes are involved in biological processes related to immunity and inflammatory responses. For example, genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration ZnO content compared to low ZnO content in both jejunum and ileum tissue. In the second study, a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration ZnO content compared to low ZnO content.</p><p><strong>Conclusions: </strong>Supplementing a diet with a pharmaceutical level of Zn as ZnO for clinically healthy post weaning piglets influences various aspects intestinal functionality, in particular in the first two weeks post-weaning. The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue. The effects do not seem related to a direct antimicrobial effect of ZnO.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"14 1","pages":"122"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548679/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dietary supplementation of zinc oxide modulates intestinal functionality during the post-weaning period in clinically healthy piglets.\",\"authors\":\"Dirkjan Schokker, Soumya K Kar, Els Willems, Alex Bossers, Ruud A Dekker, Alfons J M Jansman\",\"doi\":\"10.1186/s40104-023-00925-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To improve our understanding of host and intestinal microbiome interaction, this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets. In study 1, piglets received either a high concentration of zinc (Zn) as zinc oxide (ZnO, Zn, 2,690 mg/kg) or a low Zn concentration (100 mg/kg) in the diet during the post weaning period (d 14-23). The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated. In study 2, the impact of timing of the dietary zinc intervention was investigated, i.e., between d 0-14 and/or d 14-23 post weaning, and the consecutive effects on the piglet's intestinal functionality, here referring to microbiota composition and diversity and gene expression profiles.</p><p><strong>Results: </strong>Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration ZnO content. A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change, where mainly the commensals inter-changed. In the immediate post weaning period, i.e., d 0-14, the highest number of differentially expressed genes (DEGs) in intestinal tissue were observed between animals receiving a diet with a low or high concentration ZnO content, i.e., 23 DEGs in jejunal tissue and 11 DEGs in ileal tissue. These genes are involved in biological processes related to immunity and inflammatory responses. For example, genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration ZnO content compared to low ZnO content in both jejunum and ileum tissue. In the second study, a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration ZnO content compared to low ZnO content.</p><p><strong>Conclusions: </strong>Supplementing a diet with a pharmaceutical level of Zn as ZnO for clinically healthy post weaning piglets influences various aspects intestinal functionality, in particular in the first two weeks post-weaning. The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue. The effects do not seem related to a direct antimicrobial effect of ZnO.</p>\",\"PeriodicalId\":64067,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"14 1\",\"pages\":\"122\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-023-00925-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-023-00925-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Dietary supplementation of zinc oxide modulates intestinal functionality during the post-weaning period in clinically healthy piglets.
Background: To improve our understanding of host and intestinal microbiome interaction, this research investigated the effects of a high-level zinc oxide in the diet as model intervention on the intestinal microbiome and small intestinal functionality in clinically healthy post-weaning piglets. In study 1, piglets received either a high concentration of zinc (Zn) as zinc oxide (ZnO, Zn, 2,690 mg/kg) or a low Zn concentration (100 mg/kg) in the diet during the post weaning period (d 14-23). The effects on the piglet's small intestinal microbiome and functionality of intestinal tissue were investigated. In study 2, the impact of timing of the dietary zinc intervention was investigated, i.e., between d 0-14 and/or d 14-23 post weaning, and the consecutive effects on the piglet's intestinal functionality, here referring to microbiota composition and diversity and gene expression profiles.
Results: Differences in the small intestinal functionality were observed during the post weaning period between piglets receiving a diet with a low or high concentration ZnO content. A shift in the microbiota composition in the small intestine was observed that could be characterized as a non-pathological change, where mainly the commensals inter-changed. In the immediate post weaning period, i.e., d 0-14, the highest number of differentially expressed genes (DEGs) in intestinal tissue were observed between animals receiving a diet with a low or high concentration ZnO content, i.e., 23 DEGs in jejunal tissue and 11 DEGs in ileal tissue. These genes are involved in biological processes related to immunity and inflammatory responses. For example, genes CD59 and REG3G were downregulated in the animals receiving a diet with a high concentration ZnO content compared to low ZnO content in both jejunum and ileum tissue. In the second study, a similar result was obtained regarding the expression of genes in intestinal tissue related to immune pathways when comparing piglets receiving a diet with a high concentration ZnO content compared to low ZnO content.
Conclusions: Supplementing a diet with a pharmaceutical level of Zn as ZnO for clinically healthy post weaning piglets influences various aspects intestinal functionality, in particular in the first two weeks post-weaning. The model intervention increased both the alpha diversity of the intestinal microbiome and the expression of a limited number of genes linked to the local immune system in intestinal tissue. The effects do not seem related to a direct antimicrobial effect of ZnO.