Joshua S. Wallace , Dulan Edirisinghe , Saba Seyedi , Haley Noteboom , Micah Blate , Derya Dursun Balci , Mohammad Abu-Orf , Robert Sharp , Jeanette Brown , Diana S. Aga
{"title":"亟待解决的问题:评估生物固体热解处理过程中全氟烷基和多氟烷基物质(PFAS)去除的当前做法和关键差距","authors":"Joshua S. Wallace , Dulan Edirisinghe , Saba Seyedi , Haley Noteboom , Micah Blate , Derya Dursun Balci , Mohammad Abu-Orf , Robert Sharp , Jeanette Brown , Diana S. Aga","doi":"10.1016/j.hazl.2023.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Concerns surrounding potential health and environmental impacts of per- and polyfluoroalkyl substances (PFAS) are growing at tremendous rates because adverse health impacts are expected with trace-level exposures. Extreme measures are required to mitigate potential PFAS contamination and minimize exposures. Extensive PFAS use results in the release of diverse PFAS species from domestic, industrial, and municipal effluents to wastewater, which partition to biosolids throughout secondary treatment. Biosolids generated during municipal wastewater treatment are a major environmental source of PFAS due to prevailing disposal practices as fertilizers. Pyrolysis is emerging as a viable, scalable technology for PFAS removal from biosolids while retaining nutrients and generating renewable, raw materials for energy generation. Despite early successes of pyrolysis in PFAS removal, significant unknowns remain about PFAS and transformation product fates in pyrolysis products and emissions. Applicable PFAS sampling methods, analytical workflows, and removal assessments are currently limited to a subset of high-interest analytes and matrices. Further, analysis of exhaust gases, particulate matter, fly ashes, and other pyrolysis end-products remain largely unreported or limited due to cost and sampling limitations. This paper identifies critical knowledge gaps on the pyrolysis of biosolids that must be addressed to assess the effectiveness of PFAS removal during pyrolysis treatment.</p></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"4 ","pages":"Article 100079"},"PeriodicalIF":6.6000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Burning questions: Current practices and critical gaps in evaluating removal of per- and polyfluoroalkyl substances (PFAS) during pyrolysis treatments of biosolids\",\"authors\":\"Joshua S. Wallace , Dulan Edirisinghe , Saba Seyedi , Haley Noteboom , Micah Blate , Derya Dursun Balci , Mohammad Abu-Orf , Robert Sharp , Jeanette Brown , Diana S. Aga\",\"doi\":\"10.1016/j.hazl.2023.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Concerns surrounding potential health and environmental impacts of per- and polyfluoroalkyl substances (PFAS) are growing at tremendous rates because adverse health impacts are expected with trace-level exposures. Extreme measures are required to mitigate potential PFAS contamination and minimize exposures. Extensive PFAS use results in the release of diverse PFAS species from domestic, industrial, and municipal effluents to wastewater, which partition to biosolids throughout secondary treatment. Biosolids generated during municipal wastewater treatment are a major environmental source of PFAS due to prevailing disposal practices as fertilizers. Pyrolysis is emerging as a viable, scalable technology for PFAS removal from biosolids while retaining nutrients and generating renewable, raw materials for energy generation. Despite early successes of pyrolysis in PFAS removal, significant unknowns remain about PFAS and transformation product fates in pyrolysis products and emissions. Applicable PFAS sampling methods, analytical workflows, and removal assessments are currently limited to a subset of high-interest analytes and matrices. Further, analysis of exhaust gases, particulate matter, fly ashes, and other pyrolysis end-products remain largely unreported or limited due to cost and sampling limitations. This paper identifies critical knowledge gaps on the pyrolysis of biosolids that must be addressed to assess the effectiveness of PFAS removal during pyrolysis treatment.</p></div>\",\"PeriodicalId\":93463,\"journal\":{\"name\":\"Journal of hazardous materials letters\",\"volume\":\"4 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666911023000059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911023000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Burning questions: Current practices and critical gaps in evaluating removal of per- and polyfluoroalkyl substances (PFAS) during pyrolysis treatments of biosolids
Concerns surrounding potential health and environmental impacts of per- and polyfluoroalkyl substances (PFAS) are growing at tremendous rates because adverse health impacts are expected with trace-level exposures. Extreme measures are required to mitigate potential PFAS contamination and minimize exposures. Extensive PFAS use results in the release of diverse PFAS species from domestic, industrial, and municipal effluents to wastewater, which partition to biosolids throughout secondary treatment. Biosolids generated during municipal wastewater treatment are a major environmental source of PFAS due to prevailing disposal practices as fertilizers. Pyrolysis is emerging as a viable, scalable technology for PFAS removal from biosolids while retaining nutrients and generating renewable, raw materials for energy generation. Despite early successes of pyrolysis in PFAS removal, significant unknowns remain about PFAS and transformation product fates in pyrolysis products and emissions. Applicable PFAS sampling methods, analytical workflows, and removal assessments are currently limited to a subset of high-interest analytes and matrices. Further, analysis of exhaust gases, particulate matter, fly ashes, and other pyrolysis end-products remain largely unreported or limited due to cost and sampling limitations. This paper identifies critical knowledge gaps on the pyrolysis of biosolids that must be addressed to assess the effectiveness of PFAS removal during pyrolysis treatment.