Fabrice Vaillant, Sandra Llano, Alberto Ángel Martín, Natalia Moreno-Castellanos
{"title":"健康人体志愿者急性和短期营养干预后金浆果(Physalis peruviana)的主要尿液生物标志物。","authors":"Fabrice Vaillant, Sandra Llano, Alberto Ángel Martín, Natalia Moreno-Castellanos","doi":"10.1016/j.foodres.2023.113443","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolites entering the bloodstream and being excreted in urine as a result of consuming golden berries are currently unidentified. However, these metabolites potentially underlie the health benefits observed in various in vitro, animal, and human models. A nutritional intervention with 18 healthy human volunteers was performed, and urine was collected at baseline and after acute and short-term fruit consumption for 19 days. After UPLC-ESI/QToF-MS analysis, untargeted metabolomics was performed on the urine samples, and from the 50 most discriminant ions (VIP > 2) generated by a validated PLS-DA model (CV-ANOVA = 3.7e-35; R^2Y = 0.86, Q^2Y = 0.62 and no overfitting), 22 compounds were identified with relatively high confidence. The most discriminant metabolites confirmed by DHS/GC-MS<sup>2</sup> analysis of volatiles in urine were sesquiterpenes (C<sub>15</sub>H<sub>22</sub>): 3 stereoisomers, β-vatirenene, β-vetivenene, and β-vetispirene, and 2 isomers, eremophila-1(10),8,11-triene and α-curcumene. Another major urinary biomarker was 4β-hydroxywithanolide E and its phase II derivatives, which were observed in urine for all individual up to 24 h after the fruit was consumed; thus, the bioavailability of this biomarker in humans was demonstrated for the first time. Additionally, the excretion of certain acylcarnitines and hypoxanthine in urine increased after golden berry consumption, which may be associated with a detoxifying effect and may occur because fats were utilized rather than carbohydrates to meet the body's energy needs. The main biomarkers of golden berry consumption are specific to this fruit, confirming its potential for the functional food market.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"173 Pt 2","pages":"113443"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Main urinary biomarkers of golden berries (Physalis peruviana) following acute and short-term nutritional intervention in healthy human volunteers.\",\"authors\":\"Fabrice Vaillant, Sandra Llano, Alberto Ángel Martín, Natalia Moreno-Castellanos\",\"doi\":\"10.1016/j.foodres.2023.113443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metabolites entering the bloodstream and being excreted in urine as a result of consuming golden berries are currently unidentified. However, these metabolites potentially underlie the health benefits observed in various in vitro, animal, and human models. A nutritional intervention with 18 healthy human volunteers was performed, and urine was collected at baseline and after acute and short-term fruit consumption for 19 days. After UPLC-ESI/QToF-MS analysis, untargeted metabolomics was performed on the urine samples, and from the 50 most discriminant ions (VIP > 2) generated by a validated PLS-DA model (CV-ANOVA = 3.7e-35; R^2Y = 0.86, Q^2Y = 0.62 and no overfitting), 22 compounds were identified with relatively high confidence. The most discriminant metabolites confirmed by DHS/GC-MS<sup>2</sup> analysis of volatiles in urine were sesquiterpenes (C<sub>15</sub>H<sub>22</sub>): 3 stereoisomers, β-vatirenene, β-vetivenene, and β-vetispirene, and 2 isomers, eremophila-1(10),8,11-triene and α-curcumene. Another major urinary biomarker was 4β-hydroxywithanolide E and its phase II derivatives, which were observed in urine for all individual up to 24 h after the fruit was consumed; thus, the bioavailability of this biomarker in humans was demonstrated for the first time. Additionally, the excretion of certain acylcarnitines and hypoxanthine in urine increased after golden berry consumption, which may be associated with a detoxifying effect and may occur because fats were utilized rather than carbohydrates to meet the body's energy needs. The main biomarkers of golden berry consumption are specific to this fruit, confirming its potential for the functional food market.</p>\",\"PeriodicalId\":94010,\"journal\":{\"name\":\"Food research international (Ottawa, Ont.)\",\"volume\":\"173 Pt 2\",\"pages\":\"113443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food research international (Ottawa, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodres.2023.113443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2023.113443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Main urinary biomarkers of golden berries (Physalis peruviana) following acute and short-term nutritional intervention in healthy human volunteers.
The metabolites entering the bloodstream and being excreted in urine as a result of consuming golden berries are currently unidentified. However, these metabolites potentially underlie the health benefits observed in various in vitro, animal, and human models. A nutritional intervention with 18 healthy human volunteers was performed, and urine was collected at baseline and after acute and short-term fruit consumption for 19 days. After UPLC-ESI/QToF-MS analysis, untargeted metabolomics was performed on the urine samples, and from the 50 most discriminant ions (VIP > 2) generated by a validated PLS-DA model (CV-ANOVA = 3.7e-35; R^2Y = 0.86, Q^2Y = 0.62 and no overfitting), 22 compounds were identified with relatively high confidence. The most discriminant metabolites confirmed by DHS/GC-MS2 analysis of volatiles in urine were sesquiterpenes (C15H22): 3 stereoisomers, β-vatirenene, β-vetivenene, and β-vetispirene, and 2 isomers, eremophila-1(10),8,11-triene and α-curcumene. Another major urinary biomarker was 4β-hydroxywithanolide E and its phase II derivatives, which were observed in urine for all individual up to 24 h after the fruit was consumed; thus, the bioavailability of this biomarker in humans was demonstrated for the first time. Additionally, the excretion of certain acylcarnitines and hypoxanthine in urine increased after golden berry consumption, which may be associated with a detoxifying effect and may occur because fats were utilized rather than carbohydrates to meet the body's energy needs. The main biomarkers of golden berry consumption are specific to this fruit, confirming its potential for the functional food market.