Kai Jiang, Shubing Li, Fangfang Chen, Liping Zhu, Wenwu Li
{"title":"相变记忆材料的微观结构表征、相变和器件应用。","authors":"Kai Jiang, Shubing Li, Fangfang Chen, Liping Zhu, Wenwu Li","doi":"10.1080/14686996.2023.2252725","DOIUrl":null,"url":null,"abstract":"<p><p>Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2252725"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ed/fc/TSTA_24_2252725.PMC10512918.pdf","citationCount":"1","resultStr":"{\"title\":\"Microstructure characterization, phase transition, and device application of phase-change memory materials.\",\"authors\":\"Kai Jiang, Shubing Li, Fangfang Chen, Liping Zhu, Wenwu Li\",\"doi\":\"10.1080/14686996.2023.2252725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"24 1\",\"pages\":\"2252725\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ed/fc/TSTA_24_2252725.PMC10512918.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2023.2252725\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2252725","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure characterization, phase transition, and device application of phase-change memory materials.
Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.