Iris Álvarez-Merz, María-Dolores Muñoz, Jesús M Hernández-Guijo, José M Solís
{"title":"介导缺氧后不可逆突触沉默的非兴奋性氨基酸和转运蛋白的鉴定。","authors":"Iris Álvarez-Merz, María-Dolores Muñoz, Jesús M Hernández-Guijo, José M Solís","doi":"10.1007/s12975-023-01192-y","DOIUrl":null,"url":null,"abstract":"<p><p>The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"1070-1087"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia.\",\"authors\":\"Iris Álvarez-Merz, María-Dolores Muñoz, Jesús M Hernández-Guijo, José M Solís\",\"doi\":\"10.1007/s12975-023-01192-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.</p>\",\"PeriodicalId\":23237,\"journal\":{\"name\":\"Translational Stroke Research\",\"volume\":\" \",\"pages\":\"1070-1087\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Stroke Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12975-023-01192-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-023-01192-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia.
The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.