Shiwen Li, Tian Li, Yaoyi Cai, Zekai Yao, Miaolei He
{"title":"使用自动编码器和基于残差的便携式拉曼光谱模型快速定量分析米粉中的荣阿利特掺假。","authors":"Shiwen Li, Tian Li, Yaoyi Cai, Zekai Yao, Miaolei He","doi":"10.1016/j.saa.2023.123382","DOIUrl":null,"url":null,"abstract":"<p><p>Rice flour is a raw material for various foods and is used as a substitute for wheat flour. However, some merchants adulterate rice flour with the illegal additive Rongalite to extend the shelf life and earn illegal profits. Rongalite is highly carcinogenic, and ingestion of more than 10 g can even cause death. high-performance liquid chromatography (HPLC) and mass spectrometry (MS) are currently the main methods for detecting food adulteration, however, the existing methods have many limitations, complex operation, expensive instrumentation, etc. Raman spectroscopy has the advantages of convenience and non-destructive samples, but Raman spectroscopy can be affected by interference such as fluorescence background that affects detection, in addition to the problem of difficult quantitative analysis due to nonlinear bias. In this article, we used the preprocessing method of Savitzky-Golay smoothing filtering and VTPspline to improve the quality of the spectra and proposed the SARNet, which combines autoencoder and residual network to achieve the quantitative analysis of Rongalite content in rice flour. The new model combines a linear model with a nonlinear model, which can solve the nonlinear problem effectively. Experiments showed that the new SARNet model achieved state-of-the-art results, achieving the best R<sup>2</sup> of 0.9703 and RMSEP of 0.0075. The lowest Rongalite concentration detected by the portable Raman spectrometer was 0.49%. In summary, the proposed method using portable Raman spectroscopy combined with machine learning has low detection bias and high accuracy, which can realize quantitative analyses of adulterated Rongalite in rice flour quickly. The method provides an accurate and nondestructive analytical tool in the field of food detection.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"304 ","pages":"123382"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid quantitative analysis of Rongalite adulteration in rice flour using autoencoder and residual-based model associated with portable Raman spectroscopy.\",\"authors\":\"Shiwen Li, Tian Li, Yaoyi Cai, Zekai Yao, Miaolei He\",\"doi\":\"10.1016/j.saa.2023.123382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice flour is a raw material for various foods and is used as a substitute for wheat flour. However, some merchants adulterate rice flour with the illegal additive Rongalite to extend the shelf life and earn illegal profits. Rongalite is highly carcinogenic, and ingestion of more than 10 g can even cause death. high-performance liquid chromatography (HPLC) and mass spectrometry (MS) are currently the main methods for detecting food adulteration, however, the existing methods have many limitations, complex operation, expensive instrumentation, etc. Raman spectroscopy has the advantages of convenience and non-destructive samples, but Raman spectroscopy can be affected by interference such as fluorescence background that affects detection, in addition to the problem of difficult quantitative analysis due to nonlinear bias. In this article, we used the preprocessing method of Savitzky-Golay smoothing filtering and VTPspline to improve the quality of the spectra and proposed the SARNet, which combines autoencoder and residual network to achieve the quantitative analysis of Rongalite content in rice flour. The new model combines a linear model with a nonlinear model, which can solve the nonlinear problem effectively. Experiments showed that the new SARNet model achieved state-of-the-art results, achieving the best R<sup>2</sup> of 0.9703 and RMSEP of 0.0075. The lowest Rongalite concentration detected by the portable Raman spectrometer was 0.49%. In summary, the proposed method using portable Raman spectroscopy combined with machine learning has low detection bias and high accuracy, which can realize quantitative analyses of adulterated Rongalite in rice flour quickly. The method provides an accurate and nondestructive analytical tool in the field of food detection.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"304 \",\"pages\":\"123382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2023.123382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2023.123382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid quantitative analysis of Rongalite adulteration in rice flour using autoencoder and residual-based model associated with portable Raman spectroscopy.
Rice flour is a raw material for various foods and is used as a substitute for wheat flour. However, some merchants adulterate rice flour with the illegal additive Rongalite to extend the shelf life and earn illegal profits. Rongalite is highly carcinogenic, and ingestion of more than 10 g can even cause death. high-performance liquid chromatography (HPLC) and mass spectrometry (MS) are currently the main methods for detecting food adulteration, however, the existing methods have many limitations, complex operation, expensive instrumentation, etc. Raman spectroscopy has the advantages of convenience and non-destructive samples, but Raman spectroscopy can be affected by interference such as fluorescence background that affects detection, in addition to the problem of difficult quantitative analysis due to nonlinear bias. In this article, we used the preprocessing method of Savitzky-Golay smoothing filtering and VTPspline to improve the quality of the spectra and proposed the SARNet, which combines autoencoder and residual network to achieve the quantitative analysis of Rongalite content in rice flour. The new model combines a linear model with a nonlinear model, which can solve the nonlinear problem effectively. Experiments showed that the new SARNet model achieved state-of-the-art results, achieving the best R2 of 0.9703 and RMSEP of 0.0075. The lowest Rongalite concentration detected by the portable Raman spectrometer was 0.49%. In summary, the proposed method using portable Raman spectroscopy combined with machine learning has low detection bias and high accuracy, which can realize quantitative analyses of adulterated Rongalite in rice flour quickly. The method provides an accurate and nondestructive analytical tool in the field of food detection.