Eileen Herbers, Marty Miller, Luke Neurauter, Jacob Walters, Daniel Glaser
{"title":"用于确定驾驶员注意力状态的算法的探索性发展。","authors":"Eileen Herbers, Marty Miller, Luke Neurauter, Jacob Walters, Daniel Glaser","doi":"10.1177/00187208231198932","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Varying driver distraction algorithms were developed using vehicle kinematics and driver gaze data obtained from a camera-based driver monitoring system (DMS).</p><p><strong>Background: </strong>Distracted driving characteristics can be difficult to accurately detect due to wide variation in driver behavior across driving environments. The growing availability of information about drivers and their involvement in the driving task increases the opportunity for accurately recognizing attention state.</p><p><strong>Method: </strong>A baseline for driver distraction levels was developed using a video feed of 24 separate drivers in varying naturalistic driving conditions. This initial assessment was used to develop four buffer-based algorithms that aimed to determine a driver's real-time attentiveness, via a variety of metrics and combinations thereof.</p><p><strong>Results: </strong>Of those tested, the optimal algorithm included ungrouped glance locations and speed. Notably, as an algorithm's performance of detecting very distracted drivers improved, its accuracy for correctly identifying attentive drivers decreased.</p><p><strong>Conclusion: </strong>At a minimum, drivers' gaze position and vehicle speed should be included when designing driver distraction algorithms to delineate between glance patterns observed at high and low speeds. Distraction algorithms should be designed with an understanding of their limitations, including instances in which they may fail to detect distracted drivers, or falsely notify attentive drivers.</p><p><strong>Application: </strong>This research adds to the body of knowledge related to driver distraction and contributes to available methods to potentially address and reduce occurrences. Machine learning algorithms can build on the data elements discussed to increase distraction detection accuracy using robust artificial intelligence.</p>","PeriodicalId":56333,"journal":{"name":"Human Factors","volume":" ","pages":"2191-2204"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploratory Development of Algorithms for Determining Driver Attention Status.\",\"authors\":\"Eileen Herbers, Marty Miller, Luke Neurauter, Jacob Walters, Daniel Glaser\",\"doi\":\"10.1177/00187208231198932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Varying driver distraction algorithms were developed using vehicle kinematics and driver gaze data obtained from a camera-based driver monitoring system (DMS).</p><p><strong>Background: </strong>Distracted driving characteristics can be difficult to accurately detect due to wide variation in driver behavior across driving environments. The growing availability of information about drivers and their involvement in the driving task increases the opportunity for accurately recognizing attention state.</p><p><strong>Method: </strong>A baseline for driver distraction levels was developed using a video feed of 24 separate drivers in varying naturalistic driving conditions. This initial assessment was used to develop four buffer-based algorithms that aimed to determine a driver's real-time attentiveness, via a variety of metrics and combinations thereof.</p><p><strong>Results: </strong>Of those tested, the optimal algorithm included ungrouped glance locations and speed. Notably, as an algorithm's performance of detecting very distracted drivers improved, its accuracy for correctly identifying attentive drivers decreased.</p><p><strong>Conclusion: </strong>At a minimum, drivers' gaze position and vehicle speed should be included when designing driver distraction algorithms to delineate between glance patterns observed at high and low speeds. Distraction algorithms should be designed with an understanding of their limitations, including instances in which they may fail to detect distracted drivers, or falsely notify attentive drivers.</p><p><strong>Application: </strong>This research adds to the body of knowledge related to driver distraction and contributes to available methods to potentially address and reduce occurrences. Machine learning algorithms can build on the data elements discussed to increase distraction detection accuracy using robust artificial intelligence.</p>\",\"PeriodicalId\":56333,\"journal\":{\"name\":\"Human Factors\",\"volume\":\" \",\"pages\":\"2191-2204\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00187208231198932\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00187208231198932","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Exploratory Development of Algorithms for Determining Driver Attention Status.
Objective: Varying driver distraction algorithms were developed using vehicle kinematics and driver gaze data obtained from a camera-based driver monitoring system (DMS).
Background: Distracted driving characteristics can be difficult to accurately detect due to wide variation in driver behavior across driving environments. The growing availability of information about drivers and their involvement in the driving task increases the opportunity for accurately recognizing attention state.
Method: A baseline for driver distraction levels was developed using a video feed of 24 separate drivers in varying naturalistic driving conditions. This initial assessment was used to develop four buffer-based algorithms that aimed to determine a driver's real-time attentiveness, via a variety of metrics and combinations thereof.
Results: Of those tested, the optimal algorithm included ungrouped glance locations and speed. Notably, as an algorithm's performance of detecting very distracted drivers improved, its accuracy for correctly identifying attentive drivers decreased.
Conclusion: At a minimum, drivers' gaze position and vehicle speed should be included when designing driver distraction algorithms to delineate between glance patterns observed at high and low speeds. Distraction algorithms should be designed with an understanding of their limitations, including instances in which they may fail to detect distracted drivers, or falsely notify attentive drivers.
Application: This research adds to the body of knowledge related to driver distraction and contributes to available methods to potentially address and reduce occurrences. Machine learning algorithms can build on the data elements discussed to increase distraction detection accuracy using robust artificial intelligence.
期刊介绍:
Human Factors: The Journal of the Human Factors and Ergonomics Society publishes peer-reviewed scientific studies in human factors/ergonomics that present theoretical and practical advances concerning the relationship between people and technologies, tools, environments, and systems. Papers published in Human Factors leverage fundamental knowledge of human capabilities and limitations – and the basic understanding of cognitive, physical, behavioral, physiological, social, developmental, affective, and motivational aspects of human performance – to yield design principles; enhance training, selection, and communication; and ultimately improve human-system interfaces and sociotechnical systems that lead to safer and more effective outcomes.