Haichao Huang, Prof. Dr. Yu-Mei Lin, Prof. Dr. Lei Gong
{"title":"光化学不对称三组分反应的最新进展。","authors":"Haichao Huang, Prof. Dr. Yu-Mei Lin, Prof. Dr. Lei Gong","doi":"10.1002/tcr.202300275","DOIUrl":null,"url":null,"abstract":"<p>Over the past decades, asymmetric photochemical synthesis has garnered significant attention for its sustainability and unique ability to generate enantio-enriched molecules through distinct reaction pathways. Photochemical asymmetric three-component reactions have demonstrated significant potential for the rapid construction of chiral compounds with molecular diversity and complexity. However, noteworthy challenges persist, including the participation of high-energy intermediates such as radical species, difficulties in precise control of stereoselectivity, and the presence of competing background and side reactions. Recent breakthroughs have led to the development of sophisticated strategies in this field. This review explores the intricate mechanisms, synthetic applications, and limitations of these methods. We anticipate that it will contribute towards advancing asymmetric catalysis, photochemical synthesis, and green chemistry.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Photochemical Asymmetric Three-Component Reactions\",\"authors\":\"Haichao Huang, Prof. Dr. Yu-Mei Lin, Prof. Dr. Lei Gong\",\"doi\":\"10.1002/tcr.202300275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the past decades, asymmetric photochemical synthesis has garnered significant attention for its sustainability and unique ability to generate enantio-enriched molecules through distinct reaction pathways. Photochemical asymmetric three-component reactions have demonstrated significant potential for the rapid construction of chiral compounds with molecular diversity and complexity. However, noteworthy challenges persist, including the participation of high-energy intermediates such as radical species, difficulties in precise control of stereoselectivity, and the presence of competing background and side reactions. Recent breakthroughs have led to the development of sophisticated strategies in this field. This review explores the intricate mechanisms, synthetic applications, and limitations of these methods. We anticipate that it will contribute towards advancing asymmetric catalysis, photochemical synthesis, and green chemistry.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202300275\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202300275","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent Advances in Photochemical Asymmetric Three-Component Reactions
Over the past decades, asymmetric photochemical synthesis has garnered significant attention for its sustainability and unique ability to generate enantio-enriched molecules through distinct reaction pathways. Photochemical asymmetric three-component reactions have demonstrated significant potential for the rapid construction of chiral compounds with molecular diversity and complexity. However, noteworthy challenges persist, including the participation of high-energy intermediates such as radical species, difficulties in precise control of stereoselectivity, and the presence of competing background and side reactions. Recent breakthroughs have led to the development of sophisticated strategies in this field. This review explores the intricate mechanisms, synthetic applications, and limitations of these methods. We anticipate that it will contribute towards advancing asymmetric catalysis, photochemical synthesis, and green chemistry.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.