Lei Huang, Pengpeng Liu, Yong Du, J Fernando Bazan, Dongning Pan, Qingbo Chen, Alexandra Lee, Vijaya Sudhakara Rao Kola, Scot A Wolfe, Yong-Xu Wang
{"title":"一种富含棕色脂肪的脂肪因子,ASRA,是一种刺激食欲的瘦素受体拮抗剂。","authors":"Lei Huang, Pengpeng Liu, Yong Du, J Fernando Bazan, Dongning Pan, Qingbo Chen, Alexandra Lee, Vijaya Sudhakara Rao Kola, Scot A Wolfe, Yong-Xu Wang","doi":"10.1101/2023.09.12.557454","DOIUrl":null,"url":null,"abstract":"<p><p>The endocrine control of food intake remains incompletely understood, and whether the leptin receptor (LepR)-mediated anorexigenic pathway in the hypothalamus is negatively regulated by a humoral factor is unknown. Here, we identify an appetite-stimulating factor - ASRA - that represents a peripheral signal of energy deficit and orthosterically antagonizes LepR signaling. <i>Asra</i> encodes an 8 kD protein that is abundantly and selectively expressed in adipose tissue and to a lesser extent, in liver. ASRA associates with autophagy vesicles and its secretion is enhanced by energy deficiency. In vivo, fasting and cold stimulate <i>Asra</i> expression and increase its protein concentration in cerebrospinal fluid. <i>Asra</i> overexpression attenuates LepR signaling, leading to elevated blood glucose and development of severe hyperphagic obesity. Conversely, either adipose- or liver-specific <i>Asra</i> knockout mice display increased leptin sensitivity, improved glucose homeostasis, reduced food intake, resistance to high-fat diet-induced obesity, and blunted cold-evoked feeding response. Mechanistically, ASRA acts as a high affinity antagonist of LepR. AlphaFold2-multimer prediction and mutational studies suggest that a core segment of ASRA binds to the immunoglobin-like domain of LepR, similar to the 'site 3' recognition of the A-B loop of leptin. While administration of recombinant wild-type ASRA protein promotes food intake and increases blood glucose in a LepR signaling-dependent manner, point mutation within ASRA that disrupts LepR-binding results in a loss of these effects. Our studies reveal a previously unknown endocrine mechanism in appetite regulation and have important implications for our understanding of leptin resistance.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/15/3a/nihpp-2023.09.12.557454v1.PMC10515849.pdf","citationCount":"0","resultStr":"{\"title\":\"A brown fat-enriched adipokine, ASRA, is a leptin receptor antagonist that stimulates appetite.\",\"authors\":\"Lei Huang, Pengpeng Liu, Yong Du, J Fernando Bazan, Dongning Pan, Qingbo Chen, Alexandra Lee, Vijaya Sudhakara Rao Kola, Scot A Wolfe, Yong-Xu Wang\",\"doi\":\"10.1101/2023.09.12.557454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endocrine control of food intake remains incompletely understood, and whether the leptin receptor (LepR)-mediated anorexigenic pathway in the hypothalamus is negatively regulated by a humoral factor is unknown. Here, we identify an appetite-stimulating factor - ASRA - that represents a peripheral signal of energy deficit and orthosterically antagonizes LepR signaling. <i>Asra</i> encodes an 8 kD protein that is abundantly and selectively expressed in adipose tissue and to a lesser extent, in liver. ASRA associates with autophagy vesicles and its secretion is enhanced by energy deficiency. In vivo, fasting and cold stimulate <i>Asra</i> expression and increase its protein concentration in cerebrospinal fluid. <i>Asra</i> overexpression attenuates LepR signaling, leading to elevated blood glucose and development of severe hyperphagic obesity. Conversely, either adipose- or liver-specific <i>Asra</i> knockout mice display increased leptin sensitivity, improved glucose homeostasis, reduced food intake, resistance to high-fat diet-induced obesity, and blunted cold-evoked feeding response. Mechanistically, ASRA acts as a high affinity antagonist of LepR. AlphaFold2-multimer prediction and mutational studies suggest that a core segment of ASRA binds to the immunoglobin-like domain of LepR, similar to the 'site 3' recognition of the A-B loop of leptin. While administration of recombinant wild-type ASRA protein promotes food intake and increases blood glucose in a LepR signaling-dependent manner, point mutation within ASRA that disrupts LepR-binding results in a loss of these effects. Our studies reveal a previously unknown endocrine mechanism in appetite regulation and have important implications for our understanding of leptin resistance.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/15/3a/nihpp-2023.09.12.557454v1.PMC10515849.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.09.12.557454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.12.557454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A brown fat-enriched adipokine, ASRA, is a leptin receptor antagonist that stimulates appetite.
The endocrine control of food intake remains incompletely understood, and whether the leptin receptor (LepR)-mediated anorexigenic pathway in the hypothalamus is negatively regulated by a humoral factor is unknown. Here, we identify an appetite-stimulating factor - ASRA - that represents a peripheral signal of energy deficit and orthosterically antagonizes LepR signaling. Asra encodes an 8 kD protein that is abundantly and selectively expressed in adipose tissue and to a lesser extent, in liver. ASRA associates with autophagy vesicles and its secretion is enhanced by energy deficiency. In vivo, fasting and cold stimulate Asra expression and increase its protein concentration in cerebrospinal fluid. Asra overexpression attenuates LepR signaling, leading to elevated blood glucose and development of severe hyperphagic obesity. Conversely, either adipose- or liver-specific Asra knockout mice display increased leptin sensitivity, improved glucose homeostasis, reduced food intake, resistance to high-fat diet-induced obesity, and blunted cold-evoked feeding response. Mechanistically, ASRA acts as a high affinity antagonist of LepR. AlphaFold2-multimer prediction and mutational studies suggest that a core segment of ASRA binds to the immunoglobin-like domain of LepR, similar to the 'site 3' recognition of the A-B loop of leptin. While administration of recombinant wild-type ASRA protein promotes food intake and increases blood glucose in a LepR signaling-dependent manner, point mutation within ASRA that disrupts LepR-binding results in a loss of these effects. Our studies reveal a previously unknown endocrine mechanism in appetite regulation and have important implications for our understanding of leptin resistance.