Nadine Nagy , Gernot Kaber , Vivekananda G. Sunkari , Payton L. Marshall , Aviv Hargil , Hedwich F. Kuipers , Heather D. Ishak , Marika Bogdani , Rebecca L. Hull , Maria Grandoch , Jens W. Fischer , Tracey L. McLaughlin , Thomas N. Wight , Paul L. Bollyky
{"title":"抑制透明质酸合成可防止肥胖相关2型糖尿病患者的β细胞损失。","authors":"Nadine Nagy , Gernot Kaber , Vivekananda G. Sunkari , Payton L. Marshall , Aviv Hargil , Hedwich F. Kuipers , Heather D. Ishak , Marika Bogdani , Rebecca L. Hull , Maria Grandoch , Jens W. Fischer , Tracey L. McLaughlin , Thomas N. Wight , Paul L. Bollyky","doi":"10.1016/j.matbio.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Pancreatic β-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of β-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on β-cells such that caspase 3 activation did not result in β-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate β-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"123 ","pages":"Pages 34-47"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes\",\"authors\":\"Nadine Nagy , Gernot Kaber , Vivekananda G. Sunkari , Payton L. Marshall , Aviv Hargil , Hedwich F. Kuipers , Heather D. Ishak , Marika Bogdani , Rebecca L. Hull , Maria Grandoch , Jens W. Fischer , Tracey L. McLaughlin , Thomas N. Wight , Paul L. Bollyky\",\"doi\":\"10.1016/j.matbio.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pancreatic β-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of β-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on β-cells such that caspase 3 activation did not result in β-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate β-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.</p></div>\",\"PeriodicalId\":49851,\"journal\":{\"name\":\"Matrix Biology\",\"volume\":\"123 \",\"pages\":\"Pages 34-47\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0945053X23001026\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X23001026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes
Pancreatic β-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of β-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on β-cells such that caspase 3 activation did not result in β-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate β-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.