Yuhao Xu, Dezhi Song, Zhiqiang Zhang, Shuxin Wang, Chaoyang Shi
{"title":"一种受植物生长启发具有生长运动能力的新型可扩展连续体机器人,用于经口喉手术中的路径跟踪。","authors":"Yuhao Xu, Dezhi Song, Zhiqiang Zhang, Shuxin Wang, Chaoyang Shi","doi":"10.1089/soro.2023.0014","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a novel extensible continuum robot (ECR) with growing motion capability for improved flexible access in transoral laryngeal procedures. The robot uses an extensible continuum joint with a staggered V-shaped notched structure as the backbone, driven by the pushing and pulling of superelastic Nitinol rods. The notched structure is optimized to achieve a wide range of extension/contraction and bending motion for the continuum joint. The successive and uniform deflection of the notches provides the continuum joint with excellent constant curvature bending characteristics. The bidirectional rod-driven approach expands the robot's extension capabilities with both pushing and pulling operations, and the superelasticity of the driving rods preserves the robot's bending performance. The ECR significantly increases motion dexterity and reachability through its variable length, which facilitates collision-free access to deep lesions by following the anatomy. To further exploit the advantages of the ECR in path-following for flexible access, a growing motion approach inspired by the plant growth process has been proposed to minimize the path deviation error. Characterization experiments are conducted to verify the performances of the proposed ECR. The extension ratio achieves up to 225.92%, and the average distal positioning error and hysteresis error values are 2.87% and 0.51% within the ±120° bending range. Compared with the typical continuum robot with a fixed length, the path-following deviation of this robot is reduced by more than 58.30%, effectively reducing the risk of collision during access. Phantom experiments validate the feasibility of the proposed concept in flexible access procedures.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"171-182"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Extensible Continuum Robot with Growing Motion Capability Inspired by Plant Growth for Path-Following in Transoral Laryngeal Surgery.\",\"authors\":\"Yuhao Xu, Dezhi Song, Zhiqiang Zhang, Shuxin Wang, Chaoyang Shi\",\"doi\":\"10.1089/soro.2023.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a novel extensible continuum robot (ECR) with growing motion capability for improved flexible access in transoral laryngeal procedures. The robot uses an extensible continuum joint with a staggered V-shaped notched structure as the backbone, driven by the pushing and pulling of superelastic Nitinol rods. The notched structure is optimized to achieve a wide range of extension/contraction and bending motion for the continuum joint. The successive and uniform deflection of the notches provides the continuum joint with excellent constant curvature bending characteristics. The bidirectional rod-driven approach expands the robot's extension capabilities with both pushing and pulling operations, and the superelasticity of the driving rods preserves the robot's bending performance. The ECR significantly increases motion dexterity and reachability through its variable length, which facilitates collision-free access to deep lesions by following the anatomy. To further exploit the advantages of the ECR in path-following for flexible access, a growing motion approach inspired by the plant growth process has been proposed to minimize the path deviation error. Characterization experiments are conducted to verify the performances of the proposed ECR. The extension ratio achieves up to 225.92%, and the average distal positioning error and hysteresis error values are 2.87% and 0.51% within the ±120° bending range. Compared with the typical continuum robot with a fixed length, the path-following deviation of this robot is reduced by more than 58.30%, effectively reducing the risk of collision during access. Phantom experiments validate the feasibility of the proposed concept in flexible access procedures.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"171-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Extensible Continuum Robot with Growing Motion Capability Inspired by Plant Growth for Path-Following in Transoral Laryngeal Surgery.
This article presents a novel extensible continuum robot (ECR) with growing motion capability for improved flexible access in transoral laryngeal procedures. The robot uses an extensible continuum joint with a staggered V-shaped notched structure as the backbone, driven by the pushing and pulling of superelastic Nitinol rods. The notched structure is optimized to achieve a wide range of extension/contraction and bending motion for the continuum joint. The successive and uniform deflection of the notches provides the continuum joint with excellent constant curvature bending characteristics. The bidirectional rod-driven approach expands the robot's extension capabilities with both pushing and pulling operations, and the superelasticity of the driving rods preserves the robot's bending performance. The ECR significantly increases motion dexterity and reachability through its variable length, which facilitates collision-free access to deep lesions by following the anatomy. To further exploit the advantages of the ECR in path-following for flexible access, a growing motion approach inspired by the plant growth process has been proposed to minimize the path deviation error. Characterization experiments are conducted to verify the performances of the proposed ECR. The extension ratio achieves up to 225.92%, and the average distal positioning error and hysteresis error values are 2.87% and 0.51% within the ±120° bending range. Compared with the typical continuum robot with a fixed length, the path-following deviation of this robot is reduced by more than 58.30%, effectively reducing the risk of collision during access. Phantom experiments validate the feasibility of the proposed concept in flexible access procedures.