DeepCubist:基于复杂三维支架设计肽模拟物的分子生成器

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Computer-Aided Molecular Design Pub Date : 2022-12-03 DOI:10.1007/s10822-022-00493-y
Kohei Umedera, Atsushi Yoshimori, Hengwei Chen, Hiroyuki Kouji, Hiroyuki Nakamura, Jürgen Bajorath
{"title":"DeepCubist:基于复杂三维支架设计肽模拟物的分子生成器","authors":"Kohei Umedera,&nbsp;Atsushi Yoshimori,&nbsp;Hengwei Chen,&nbsp;Hiroyuki Kouji,&nbsp;Hiroyuki Nakamura,&nbsp;Jürgen Bajorath","doi":"10.1007/s10822-022-00493-y","DOIUrl":null,"url":null,"abstract":"<div><p>Mimicking bioactive conformations of peptide segments involved in the formation of protein-protein interfaces with small molecules is thought to represent a promising strategy for the design of protein-protein interaction (PPI) inhibitors. For compound design, the use of three-dimensional (3D) scaffolds rich in sp3-centers makes it possible to precisely mimic bioactive peptide conformations. Herein, we introduce DeepCubist, a molecular generator for designing peptidomimetics based on 3D scaffolds. Firstly, enumerated 3D scaffolds are superposed on a target peptide conformation to identify a preferred template structure for designing peptidomimetics. Secondly, heteroatoms and unsaturated bonds are introduced into the template via a deep generative model to produce candidate compounds. DeepCubist was applied to design peptidomimetics of exemplary peptide turn, helix, and loop structures in pharmaceutical targets engaging in PPIs.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 2","pages":"107 - 115"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-022-00493-y.pdf","citationCount":"1","resultStr":"{\"title\":\"DeepCubist: Molecular Generator for Designing Peptidomimetics based on Complex three-dimensional scaffolds\",\"authors\":\"Kohei Umedera,&nbsp;Atsushi Yoshimori,&nbsp;Hengwei Chen,&nbsp;Hiroyuki Kouji,&nbsp;Hiroyuki Nakamura,&nbsp;Jürgen Bajorath\",\"doi\":\"10.1007/s10822-022-00493-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mimicking bioactive conformations of peptide segments involved in the formation of protein-protein interfaces with small molecules is thought to represent a promising strategy for the design of protein-protein interaction (PPI) inhibitors. For compound design, the use of three-dimensional (3D) scaffolds rich in sp3-centers makes it possible to precisely mimic bioactive peptide conformations. Herein, we introduce DeepCubist, a molecular generator for designing peptidomimetics based on 3D scaffolds. Firstly, enumerated 3D scaffolds are superposed on a target peptide conformation to identify a preferred template structure for designing peptidomimetics. Secondly, heteroatoms and unsaturated bonds are introduced into the template via a deep generative model to produce candidate compounds. DeepCubist was applied to design peptidomimetics of exemplary peptide turn, helix, and loop structures in pharmaceutical targets engaging in PPIs.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"37 2\",\"pages\":\"107 - 115\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10822-022-00493-y.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-022-00493-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-022-00493-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

用小分子模拟参与蛋白质-蛋白质界面形成的肽段的生物活性构象被认为是设计蛋白质-蛋白质相互作用(PPI)抑制剂的一种有前途的策略。对于化合物设计,使用富含sp3中心的三维(3D)支架可以精确模拟生物活性肽的构象。在此,我们介绍了DeepCubist,一个分子生成器,用于设计基于3D支架的肽模拟物。首先,将列举的3D支架叠加在目标肽构象上,以确定设计拟肽物的首选模板结构。其次,通过深度生成模型将杂原子和不饱和键引入模板中,生成候选化合物;DeepCubist被应用于设计参与PPIs的药物靶点的示范性肽转、螺旋和环结构的肽模拟物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepCubist: Molecular Generator for Designing Peptidomimetics based on Complex three-dimensional scaffolds

Mimicking bioactive conformations of peptide segments involved in the formation of protein-protein interfaces with small molecules is thought to represent a promising strategy for the design of protein-protein interaction (PPI) inhibitors. For compound design, the use of three-dimensional (3D) scaffolds rich in sp3-centers makes it possible to precisely mimic bioactive peptide conformations. Herein, we introduce DeepCubist, a molecular generator for designing peptidomimetics based on 3D scaffolds. Firstly, enumerated 3D scaffolds are superposed on a target peptide conformation to identify a preferred template structure for designing peptidomimetics. Secondly, heteroatoms and unsaturated bonds are introduced into the template via a deep generative model to produce candidate compounds. DeepCubist was applied to design peptidomimetics of exemplary peptide turn, helix, and loop structures in pharmaceutical targets engaging in PPIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
期刊最新文献
Discovering promising drug candidates for Parkinson’s disease: integrating miRNA and DEG analysis with molecular dynamics and MMPBSA In silico exploration of natural xanthone derivatives as potential inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and cellular entry Elucidating allosteric signal disruption in PBP2a: impact of N146K/E150K mutations on ceftaroline resistance in methicillin-resistant Staphylococcus aureus In silico design of dehydrophenylalanine containing peptide activators of glucokinase using pharmacophore modelling, molecular dynamics and machine learning: implications in type 2 diabetes ConoDL: a deep learning framework for rapid generation and prediction of conotoxins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1