Michelle Offit, Brian Nagle, Gonul Ozay, Irma Zhang, Anastassia Kerasidis, Yasar Torres-Yaghi, Fernando Pagan
{"title":"腺苷A2A拮抗剂与帕金森病。","authors":"Michelle Offit, Brian Nagle, Gonul Ozay, Irma Zhang, Anastassia Kerasidis, Yasar Torres-Yaghi, Fernando Pagan","doi":"10.1016/bs.irn.2023.06.004","DOIUrl":null,"url":null,"abstract":"<p><p>Although there is no cure for Parkinson's disease (PD), there are several classes of medications with various mechanisms of action that can help improve the functionality of someone with PD. Dopamine derivatives are first line therapies for PD, hence dopamine receptor agonists (DAs) have been shown to improve functionality of symptoms in PD patients. The two main formulations of dopamine agonist medications in PD therapy are ergoline and non-ergoline derivatives. Additionally, it has been shown that PD can involve irregularities in other neurotransmitters, such as acetylcholine, norepinephrine, and serotonin, hence why non-dopaminergic medications are also vital in PD management. Examples include NMDA receptor antagonists, dopamine antagonists (i.e. neuroleptics), acetylcholine receptor antagonists, serotonin receptor 2A agonists, and adenosine A<sub>2</sub> antagonists. In general, dopaminergic medications are the most effective in improving motor involvement with PD, whereas non-dopaminergic medications tend to focus on the non-motor involvement of PD. In this chapter, we will focus on the chemistry and medication background on dopaminergic vs non-dopaminergic therapy, with a focus of adenosine A<sub>2</sub> antagonists at the end.</p>","PeriodicalId":94058,"journal":{"name":"International review of neurobiology","volume":"170 ","pages":"105-119"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adenosine A<sub>2A</sub> antagonists and Parkinson's disease.\",\"authors\":\"Michelle Offit, Brian Nagle, Gonul Ozay, Irma Zhang, Anastassia Kerasidis, Yasar Torres-Yaghi, Fernando Pagan\",\"doi\":\"10.1016/bs.irn.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although there is no cure for Parkinson's disease (PD), there are several classes of medications with various mechanisms of action that can help improve the functionality of someone with PD. Dopamine derivatives are first line therapies for PD, hence dopamine receptor agonists (DAs) have been shown to improve functionality of symptoms in PD patients. The two main formulations of dopamine agonist medications in PD therapy are ergoline and non-ergoline derivatives. Additionally, it has been shown that PD can involve irregularities in other neurotransmitters, such as acetylcholine, norepinephrine, and serotonin, hence why non-dopaminergic medications are also vital in PD management. Examples include NMDA receptor antagonists, dopamine antagonists (i.e. neuroleptics), acetylcholine receptor antagonists, serotonin receptor 2A agonists, and adenosine A<sub>2</sub> antagonists. In general, dopaminergic medications are the most effective in improving motor involvement with PD, whereas non-dopaminergic medications tend to focus on the non-motor involvement of PD. In this chapter, we will focus on the chemistry and medication background on dopaminergic vs non-dopaminergic therapy, with a focus of adenosine A<sub>2</sub> antagonists at the end.</p>\",\"PeriodicalId\":94058,\"journal\":{\"name\":\"International review of neurobiology\",\"volume\":\"170 \",\"pages\":\"105-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International review of neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.irn.2023.06.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.irn.2023.06.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Adenosine A2A antagonists and Parkinson's disease.
Although there is no cure for Parkinson's disease (PD), there are several classes of medications with various mechanisms of action that can help improve the functionality of someone with PD. Dopamine derivatives are first line therapies for PD, hence dopamine receptor agonists (DAs) have been shown to improve functionality of symptoms in PD patients. The two main formulations of dopamine agonist medications in PD therapy are ergoline and non-ergoline derivatives. Additionally, it has been shown that PD can involve irregularities in other neurotransmitters, such as acetylcholine, norepinephrine, and serotonin, hence why non-dopaminergic medications are also vital in PD management. Examples include NMDA receptor antagonists, dopamine antagonists (i.e. neuroleptics), acetylcholine receptor antagonists, serotonin receptor 2A agonists, and adenosine A2 antagonists. In general, dopaminergic medications are the most effective in improving motor involvement with PD, whereas non-dopaminergic medications tend to focus on the non-motor involvement of PD. In this chapter, we will focus on the chemistry and medication background on dopaminergic vs non-dopaminergic therapy, with a focus of adenosine A2 antagonists at the end.