神经炎症的调节:IL-33/ST2轴在缺血性脑卒中中的作用和机制研究进展。

IF 2.2 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-09-20 DOI:10.1159/000533984
Shuang Guo, Chengli Qian, Wenfeng Li, Zhikun Zeng, Junlong Cai, Yi Luo
{"title":"神经炎症的调节:IL-33/ST2轴在缺血性脑卒中中的作用和机制研究进展。","authors":"Shuang Guo, Chengli Qian, Wenfeng Li, Zhikun Zeng, Junlong Cai, Yi Luo","doi":"10.1159/000533984","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614518/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke.\",\"authors\":\"Shuang Guo, Chengli Qian, Wenfeng Li, Zhikun Zeng, Junlong Cai, Yi Luo\",\"doi\":\"10.1159/000533984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.</p>\",\"PeriodicalId\":19133,\"journal\":{\"name\":\"Neuroimmunomodulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614518/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimmunomodulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000533984\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533984","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

白细胞介素(IL)-33最初在2005年被认为是IL-1细胞因子家族的一个组成部分。它通过与受体ST2(IL-33R)结合来调节免疫反应,从而发挥多效性作用。IL-33/ST2通路与几种炎症性疾病有关。在人类和啮齿类动物中,IL-33在脊髓组织和大脑中的广泛表达表明其具有中枢神经系统(CNS)特异性功能。越来越多的证据支持IL-33/ST2通路在缺血性中风中的保护作用,以及对潜在机制的更好理解。IL-33在调节神经胶质细胞对神经病理学损伤的炎症分子释放中起着至关重要的作用。此外,脑缺血后IL-33/ST2介导的神经保护可能与T细胞功能有关,特别是调节性T细胞(Tregs)。可溶性ST2(sST2)在IL-33/ST2轴上充当诱饵受体,通过膜ST2受体阻断IL-33信号传导。sST2也被确定为缺血性中风的潜在炎症生物标志物。特异性靶向sST2以消除其对缺血性脑组织中保护性IL-33/ST2通路的抑制是治疗缺血性脑卒中的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation of Neuroinflammation: Advances in Roles and Mechanisms of the IL-33/ST2 Axis Involved in Ischemic Stroke.

Interleukin (IL)-33 was initially recognized as a constituent of the IL-1 cytokine family in 2005. It exerts pleiotropic effects by regulating immune responses via its binding to the receptor ST2 (IL-33R). The IL-33/ST2 pathway has been linked to several inflammatory disorders. In human and rodents, the broad expression of IL-33 in spinal cord tissues and brain indicates its central nervous system-specific functions. Growing evidence supports the protective effects of the IL-33/ST2 pathway in ischemic stroke, along with a better understanding of the underlying mechanisms. IL-33 plays a crucial role in the regulation of the release of inflammatory molecules from glial cells in response to neuropathological lesions. Moreover, IL-33/ST2-mediated neuroprotection following cerebral ischemia may be linked to T-cell function, specifically regulatory T cells. Soluble ST2 (sST2) acts as a decoy receptor in the IL-33/ST2 axis, blocking IL-33 signaling through the membrane ST2 receptor. sST2 has also been identified as a potential inflammatory biomarker of ischemic stroke. Targeting sST2 specifically to eliminate its inhibition of the protective IL-33/ST2 pathway in ischemic brain tissues is a promising approach for the treatment of ischemic stroke.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroimmunomodulation
Neuroimmunomodulation 医学-免疫学
CiteScore
3.60
自引率
4.20%
发文量
35
审稿时长
>12 weeks
期刊介绍: The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.
期刊最新文献
A history of psycho-neuro-endocrine immune interactions in rheumatic diseases. STEERING THE MICROBIOTA-GUT-BRAIN AXIS BY ANTIBIOTICS TO MODEL NEURO-IMMUNE-ENDOCRINE DISORDERS. Serum levels of the steroid hormone dehydroepiandrosterone (DHEA) are associated with psychological trauma and lymphocyte telomere integrity in women suffering from depression. Sympathetic-Immune Interactions during Different Types of Immune Challenge. Thymic Innervation Impairment in Experimental Autoimmune Encephalomyelitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1