糖基磷脂酰肌醇锚定的α-淀粉酶AgtA对α-1,4-糖苷键的裂解降低了米曲霉细胞壁α-1,3-葡聚糖的分子量。

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2023-01-10 eCollection Date: 2022-01-01 DOI:10.3389/ffunb.2022.1061841
Ami Koizumi, Ken Miyazawa, Makoto Ogata, Yuzuru Takahashi, Shigekazu Yano, Akira Yoshimi, Motoaki Sano, Masafumi Hidaka, Takanori Nihira, Hiroyuki Nakai, Satoshi Kimura, Tadahisa Iwata, Keietsu Abe
{"title":"糖基磷脂酰肌醇锚定的α-淀粉酶AgtA对α-1,4-糖苷键的裂解降低了米曲霉细胞壁α-1,3-葡聚糖的分子量。","authors":"Ami Koizumi, Ken Miyazawa, Makoto Ogata, Yuzuru Takahashi, Shigekazu Yano, Akira Yoshimi, Motoaki Sano, Masafumi Hidaka, Takanori Nihira, Hiroyuki Nakai, Satoshi Kimura, Tadahisa Iwata, Keietsu Abe","doi":"10.3389/ffunb.2022.1061841","DOIUrl":null,"url":null,"abstract":"<p><p><i>Aspergillus</i> fungi contain α-1,3-glucan with a low proportion of α-1,4-glucan as a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored α-amylases are conserved in <i>Aspergillus</i> fungi. The GPI-anchored α-amylase AmyD in <i>Aspergillus nidulans</i> has been reported to directly suppress the biosynthesis of cell wall α-1,3-glucan but not to degrade it <i>in vivo</i>. However, the detailed mechanism of cell wall α-1,3-glucan biosynthesis regulation by AmyD remains unclear. Here we focused on AoAgtA, which is encoded by the <i>Aspergillus oryzae agtA</i> gene, an ortholog of the <i>A. nidulans amyD</i> gene. Similar to findings in <i>A. nidulans</i>, <i>agtA</i> overexpression in <i>A. oryzae</i> grown in submerged culture decreased the amount of cell wall α-1,3-glucan and led to the formation of smaller hyphal pellets in comparison with the wild-type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA produced in <i>Pichia pastoris</i> and found that it degraded soluble starch, but not linear bacterial α-1,3-glucan. Furthermore, rAoAgtA cleaved 3-α-maltotetraosylglucose with a structure similar to the predicted boundary structure between the α-1,3-glucan main chain and a short spacer composed of α-1,4-linked glucose residues in cell wall α-1,3-glucan. Interestingly, rAoAgtA randomly cleaved only the α-1,4-glycosidic bonds of 3-α-maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell wall α-1,3-glucan. Consistent with this hypothesis, heterologous overexpression of <i>agtA</i> in <i>A. nidulans</i> decreased the molecular weight of cell wall α-1,3-glucan. These <i>in vitro</i> and <i>in vivo</i> properties of AoAgtA suggest that GPI-anchored α-amylases can degrade the spacer α-1,4-glycosidic linkages in cell wall α-1,3-glucan before its insolubilization, and this spacer cleavage decreases the molecular weight of cell wall α-1,3-glucan <i>in vivo</i>.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cleavage of α-1,4-glycosidic linkages by the glycosylphosphatidylinositol-anchored α-amylase AgtA decreases the molecular weight of cell wall α-1,3-glucan in <i>Aspergillus oryzae</i>.\",\"authors\":\"Ami Koizumi, Ken Miyazawa, Makoto Ogata, Yuzuru Takahashi, Shigekazu Yano, Akira Yoshimi, Motoaki Sano, Masafumi Hidaka, Takanori Nihira, Hiroyuki Nakai, Satoshi Kimura, Tadahisa Iwata, Keietsu Abe\",\"doi\":\"10.3389/ffunb.2022.1061841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Aspergillus</i> fungi contain α-1,3-glucan with a low proportion of α-1,4-glucan as a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored α-amylases are conserved in <i>Aspergillus</i> fungi. The GPI-anchored α-amylase AmyD in <i>Aspergillus nidulans</i> has been reported to directly suppress the biosynthesis of cell wall α-1,3-glucan but not to degrade it <i>in vivo</i>. However, the detailed mechanism of cell wall α-1,3-glucan biosynthesis regulation by AmyD remains unclear. Here we focused on AoAgtA, which is encoded by the <i>Aspergillus oryzae agtA</i> gene, an ortholog of the <i>A. nidulans amyD</i> gene. Similar to findings in <i>A. nidulans</i>, <i>agtA</i> overexpression in <i>A. oryzae</i> grown in submerged culture decreased the amount of cell wall α-1,3-glucan and led to the formation of smaller hyphal pellets in comparison with the wild-type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA produced in <i>Pichia pastoris</i> and found that it degraded soluble starch, but not linear bacterial α-1,3-glucan. Furthermore, rAoAgtA cleaved 3-α-maltotetraosylglucose with a structure similar to the predicted boundary structure between the α-1,3-glucan main chain and a short spacer composed of α-1,4-linked glucose residues in cell wall α-1,3-glucan. Interestingly, rAoAgtA randomly cleaved only the α-1,4-glycosidic bonds of 3-α-maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell wall α-1,3-glucan. Consistent with this hypothesis, heterologous overexpression of <i>agtA</i> in <i>A. nidulans</i> decreased the molecular weight of cell wall α-1,3-glucan. These <i>in vitro</i> and <i>in vivo</i> properties of AoAgtA suggest that GPI-anchored α-amylases can degrade the spacer α-1,4-glycosidic linkages in cell wall α-1,3-glucan before its insolubilization, and this spacer cleavage decreases the molecular weight of cell wall α-1,3-glucan <i>in vivo</i>.</p>\",\"PeriodicalId\":73084,\"journal\":{\"name\":\"Frontiers in fungal biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in fungal biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffunb.2022.1061841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2022.1061841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

曲霉属真菌含有α-1,3-葡聚糖,而α-1,4-葡聚糖作为主要细胞壁多糖的比例较低。糖基磷脂酰肌醇(GPI)锚定的α-淀粉酶在曲霉菌中是保守的。据报道,构巢曲霉中GPI锚定的α-淀粉酶AmyD可直接抑制细胞壁α-1,3-葡聚糖的生物合成,但不会在体内降解。然而,AmyD调节细胞壁α-1,3-葡聚糖生物合成的详细机制尚不清楚。在这里,我们重点研究了AoAgtA,它由米曲霉agtA基因编码,该基因是巢状芽孢杆菌amyD基因的直系同源物。与在巢状芽孢杆菌中的发现类似,与野生型菌株相比,在浸没培养中生长的米曲霉中agtA过表达降低了细胞壁α-1,3-葡聚糖的量,并导致形成更小的菌丝颗粒。我们分析了毕赤酵母中产生的重组(r)AoAgtA的酶性质,发现它降解可溶性淀粉,但不降解线性细菌α-1,3-葡聚糖。此外,rAoAgtA裂解了3-α-麦芽四糖基葡萄糖,其结构与预测的α-1,3-葡聚糖主链和细胞壁中由α-1,4-连接的葡萄糖残基组成的短间隔区之间的边界结构相似。有趣的是,rAoAgtA只随机切割3-α-麦芽四糖基葡萄糖的α-1,4-糖苷键,这表明AoAgtAa可能切割细胞壁中的间隔物α-1,3-葡聚糖。与这一假设一致的是,巢状芽孢杆菌中agtA的异源过表达降低了细胞壁α-1,3-葡聚糖的分子量。AoAgtA的这些体外和体内特性表明,GPI锚定的α-淀粉酶在不溶解之前可以降解细胞壁α-1,3-葡聚糖中的间隔物α-1,4-糖苷键,并且这种间隔物的切割降低了体内细胞壁α1,3-葡聚糖的分子量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cleavage of α-1,4-glycosidic linkages by the glycosylphosphatidylinositol-anchored α-amylase AgtA decreases the molecular weight of cell wall α-1,3-glucan in Aspergillus oryzae.

Aspergillus fungi contain α-1,3-glucan with a low proportion of α-1,4-glucan as a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored α-amylases are conserved in Aspergillus fungi. The GPI-anchored α-amylase AmyD in Aspergillus nidulans has been reported to directly suppress the biosynthesis of cell wall α-1,3-glucan but not to degrade it in vivo. However, the detailed mechanism of cell wall α-1,3-glucan biosynthesis regulation by AmyD remains unclear. Here we focused on AoAgtA, which is encoded by the Aspergillus oryzae agtA gene, an ortholog of the A. nidulans amyD gene. Similar to findings in A. nidulans, agtA overexpression in A. oryzae grown in submerged culture decreased the amount of cell wall α-1,3-glucan and led to the formation of smaller hyphal pellets in comparison with the wild-type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA produced in Pichia pastoris and found that it degraded soluble starch, but not linear bacterial α-1,3-glucan. Furthermore, rAoAgtA cleaved 3-α-maltotetraosylglucose with a structure similar to the predicted boundary structure between the α-1,3-glucan main chain and a short spacer composed of α-1,4-linked glucose residues in cell wall α-1,3-glucan. Interestingly, rAoAgtA randomly cleaved only the α-1,4-glycosidic bonds of 3-α-maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell wall α-1,3-glucan. Consistent with this hypothesis, heterologous overexpression of agtA in A. nidulans decreased the molecular weight of cell wall α-1,3-glucan. These in vitro and in vivo properties of AoAgtA suggest that GPI-anchored α-amylases can degrade the spacer α-1,4-glycosidic linkages in cell wall α-1,3-glucan before its insolubilization, and this spacer cleavage decreases the molecular weight of cell wall α-1,3-glucan in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Metal tolerance of Río Tinto fungi. What lies behind the large genome of Colletotrichum lindemuthianum. Conserved perception of host and non-host signals via the a-pheromone receptor Ste3 in Colletotrichum graminicola. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. gloeosporioides. Editorial: Co-morbidity of COVID 19 and fungal infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1