Sahal Alotaibi , Alanood Alsaleh , Sophie Wuerger , Georg Meyer
{"title":"新型语音学习过程中的快速神经变化:功能磁共振成像和DTI研究。","authors":"Sahal Alotaibi , Alanood Alsaleh , Sophie Wuerger , Georg Meyer","doi":"10.1016/j.bandl.2023.105324","DOIUrl":null,"url":null,"abstract":"<div><p>While the functional and microstructural changes that occur when we learn new language skills are well documented, relatively little is known about the time course of these changes. Here a combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study that tracks neural change over three days of learning Arabic phonetic categorization as a new language (L-training) is presented. Twenty adult native English-speaking (L-native) participants are scanned before and after training to perceive and produce L-training phonetic contrasts for one hour on three consecutive days. A third (Chinese) language is used as a control language (L-control). Behavioral results show significant performance improvement for L-training in both learnt tasks; the perception and production task. Imaging analysis reveals that, training-related hemodynamic fMRI signal and fractional anisotropy (FA) value increasing can be observed, in the left inferior frontal gyrus (LIFG) and positively correlated with behavioral improvement. Moreover, post training functional connectivity findings show a significant increasing between LIFG and left inferior parietal lobule for L-training. These results indicate that three hours of phonetic categorization learning causes functional and microstructural changes that are typically associated with much more long-term learning.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid neural changes during novel speech-sound learning: An fMRI and DTI study\",\"authors\":\"Sahal Alotaibi , Alanood Alsaleh , Sophie Wuerger , Georg Meyer\",\"doi\":\"10.1016/j.bandl.2023.105324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While the functional and microstructural changes that occur when we learn new language skills are well documented, relatively little is known about the time course of these changes. Here a combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study that tracks neural change over three days of learning Arabic phonetic categorization as a new language (L-training) is presented. Twenty adult native English-speaking (L-native) participants are scanned before and after training to perceive and produce L-training phonetic contrasts for one hour on three consecutive days. A third (Chinese) language is used as a control language (L-control). Behavioral results show significant performance improvement for L-training in both learnt tasks; the perception and production task. Imaging analysis reveals that, training-related hemodynamic fMRI signal and fractional anisotropy (FA) value increasing can be observed, in the left inferior frontal gyrus (LIFG) and positively correlated with behavioral improvement. Moreover, post training functional connectivity findings show a significant increasing between LIFG and left inferior parietal lobule for L-training. These results indicate that three hours of phonetic categorization learning causes functional and microstructural changes that are typically associated with much more long-term learning.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093934X23001037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093934X23001037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Rapid neural changes during novel speech-sound learning: An fMRI and DTI study
While the functional and microstructural changes that occur when we learn new language skills are well documented, relatively little is known about the time course of these changes. Here a combined functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study that tracks neural change over three days of learning Arabic phonetic categorization as a new language (L-training) is presented. Twenty adult native English-speaking (L-native) participants are scanned before and after training to perceive and produce L-training phonetic contrasts for one hour on three consecutive days. A third (Chinese) language is used as a control language (L-control). Behavioral results show significant performance improvement for L-training in both learnt tasks; the perception and production task. Imaging analysis reveals that, training-related hemodynamic fMRI signal and fractional anisotropy (FA) value increasing can be observed, in the left inferior frontal gyrus (LIFG) and positively correlated with behavioral improvement. Moreover, post training functional connectivity findings show a significant increasing between LIFG and left inferior parietal lobule for L-training. These results indicate that three hours of phonetic categorization learning causes functional and microstructural changes that are typically associated with much more long-term learning.