基于最小均匀分布扩散梯度方向的高角度扩散张量成像估计。

Frontiers in radiology Pub Date : 2023-09-11 eCollection Date: 2023-01-01 DOI:10.3389/fradi.2023.1238566
Zihao Tang, Sheng Chen, Arkiev D'Souza, Dongnan Liu, Fernando Calamante, Michael Barnett, Weidong Cai, Chenyu Wang, Mariano Cabezas
{"title":"基于最小均匀分布扩散梯度方向的高角度扩散张量成像估计。","authors":"Zihao Tang,&nbsp;Sheng Chen,&nbsp;Arkiev D'Souza,&nbsp;Dongnan Liu,&nbsp;Fernando Calamante,&nbsp;Michael Barnett,&nbsp;Weidong Cai,&nbsp;Chenyu Wang,&nbsp;Mariano Cabezas","doi":"10.3389/fradi.2023.1238566","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and reveal details of the underlying brain micro-structure. By fitting a tensor model to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI) can be derived and scalar measures, such as fractional anisotropy (FA), can then be estimated from the DTI to summarise quantitative microstructural information for clinical studies. In particular, FA has been shown to be a useful research metric to identify tissue abnormalities in neurological disease (e.g. decreased anisotropy as a proxy for tissue damage). However, time constraints in clinical practice lead to low angular resolution diffusion imaging (LARDI) acquisitions that can cause inaccurate FA value estimates when compared to those generated from high angular resolution diffusion imaging (HARDI) acquisitions. In this work, we propose High Angular DTI Estimation Network (HADTI-Net) to estimate an enhanced DTI model from LARDI with a set of minimal and evenly distributed diffusion gradient directions. Extensive experiments have been conducted to show the reliability and generalisation of HADTI-Net to generate high angular DTI estimation from any minimal evenly distributed diffusion gradient directions and to explore the feasibility of applying a data-driven method for this task. The code repository of this work and other related works can be found at https://mri-synthesis.github.io/.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"3 ","pages":"1238566"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520249/pdf/","citationCount":"0","resultStr":"{\"title\":\"High angular diffusion tensor imaging estimation from minimal evenly distributed diffusion gradient directions.\",\"authors\":\"Zihao Tang,&nbsp;Sheng Chen,&nbsp;Arkiev D'Souza,&nbsp;Dongnan Liu,&nbsp;Fernando Calamante,&nbsp;Michael Barnett,&nbsp;Weidong Cai,&nbsp;Chenyu Wang,&nbsp;Mariano Cabezas\",\"doi\":\"10.3389/fradi.2023.1238566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and reveal details of the underlying brain micro-structure. By fitting a tensor model to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI) can be derived and scalar measures, such as fractional anisotropy (FA), can then be estimated from the DTI to summarise quantitative microstructural information for clinical studies. In particular, FA has been shown to be a useful research metric to identify tissue abnormalities in neurological disease (e.g. decreased anisotropy as a proxy for tissue damage). However, time constraints in clinical practice lead to low angular resolution diffusion imaging (LARDI) acquisitions that can cause inaccurate FA value estimates when compared to those generated from high angular resolution diffusion imaging (HARDI) acquisitions. In this work, we propose High Angular DTI Estimation Network (HADTI-Net) to estimate an enhanced DTI model from LARDI with a set of minimal and evenly distributed diffusion gradient directions. Extensive experiments have been conducted to show the reliability and generalisation of HADTI-Net to generate high angular DTI estimation from any minimal evenly distributed diffusion gradient directions and to explore the feasibility of applying a data-driven method for this task. The code repository of this work and other related works can be found at https://mri-synthesis.github.io/.</p>\",\"PeriodicalId\":73101,\"journal\":{\"name\":\"Frontiers in radiology\",\"volume\":\"3 \",\"pages\":\"1238566\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520249/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fradi.2023.1238566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1238566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扩散加权成像(DWI)是一种基于磁共振成像(MRI)原理的非侵入性成像技术,用于测量水的扩散率并揭示潜在大脑微观结构的细节。通过拟合张量模型来量化水扩散的方向性,可以导出扩散张量图像(DTI),然后可以根据DTI估计标量测量,如分数各向异性(FA),以总结临床研究的定量微观结构信息。特别是,FA已被证明是一种有用的研究指标,可用于识别神经疾病中的组织异常(例如,作为组织损伤指标的各向异性降低)。然而,临床实践中的时间限制导致低角度分辨率扩散成像(LARDI)采集,与高角度分辨率扩散图像(HARDI)采集相比,这可能导致FA值估计不准确。在这项工作中,我们提出了高角度DTI估计网络(HADTI Net),以根据具有一组最小且均匀分布的扩散梯度方向的LARDI来估计增强的DTI模型。已经进行了大量的实验来证明HADTI Net的可靠性和通用性,以从任何最小均匀分布的扩散梯度方向生成高角度DTI估计,并探索将数据驱动方法应用于该任务的可行性。这部作品和其他相关作品的代码库可以在https://mri-synthesis.github.io/.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High angular diffusion tensor imaging estimation from minimal evenly distributed diffusion gradient directions.

Diffusion-weighted Imaging (DWI) is a non-invasive imaging technique based on Magnetic Resonance Imaging (MRI) principles to measure water diffusivity and reveal details of the underlying brain micro-structure. By fitting a tensor model to quantify the directionality of water diffusion a Diffusion Tensor Image (DTI) can be derived and scalar measures, such as fractional anisotropy (FA), can then be estimated from the DTI to summarise quantitative microstructural information for clinical studies. In particular, FA has been shown to be a useful research metric to identify tissue abnormalities in neurological disease (e.g. decreased anisotropy as a proxy for tissue damage). However, time constraints in clinical practice lead to low angular resolution diffusion imaging (LARDI) acquisitions that can cause inaccurate FA value estimates when compared to those generated from high angular resolution diffusion imaging (HARDI) acquisitions. In this work, we propose High Angular DTI Estimation Network (HADTI-Net) to estimate an enhanced DTI model from LARDI with a set of minimal and evenly distributed diffusion gradient directions. Extensive experiments have been conducted to show the reliability and generalisation of HADTI-Net to generate high angular DTI estimation from any minimal evenly distributed diffusion gradient directions and to explore the feasibility of applying a data-driven method for this task. The code repository of this work and other related works can be found at https://mri-synthesis.github.io/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Language task-based fMRI analysis using machine learning and deep learning. Case Report: Diffuse cerebral lymphomatosis with superimposed multifocal primary CNS lymphoma. Diffusion-weighted MRI in the identification of renal parenchymal involvement in children with a first episode of febrile urinary tract infection. SenseCare: a research platform for medical image informatics and interactive 3D visualization. Editorial: Artificial intelligence and multimodal medical imaging data fusion for improving cardiovascular disease care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1