超分辨率超声定位显微镜对小鼠深部脑微血管系统的纵向唤醒成像。

Yike Wang, Matthew R Lowerison, Zhe Huang, Qi You, Bing-Ze Lin, Daniel A Llano, Pengfei Song
{"title":"超分辨率超声定位显微镜对小鼠深部脑微血管系统的纵向唤醒成像。","authors":"Yike Wang, Matthew R Lowerison, Zhe Huang, Qi You, Bing-Ze Lin, Daniel A Llano, Pengfei Song","doi":"10.1101/2023.09.01.555789","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution. However, existing preclinical ULM applications are largely constrained to anesthetized animals, introducing confounding vascular effects such as vasodilation and altered hemodynamics. As such, ULM quantifications (e.g., vessel diameter, density, and flow velocity) may be confounded by the use of anesthesia, undermining the usefulness of ULM in practice. Here we introduce a method to address this limitation and achieve ULM imaging in awake mouse brain. Pupillary monitoring was used to support the presence of the awake state during ULM imaging. Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions. In the cortex, the effects induced by isoflurane are more pronounced on venous flow than on arterial flow. In addition, serial <i>in vivo</i> imaging of the same animal brain at weekly intervals demonstrated the highly robust longitudinal imaging capability of the proposed technique. The consistency was further verified through quantitative analysis on individual vessels, cortical regions of arteries and veins, and subcortical regions. This study demonstrates longitudinal ULM imaging in the awake mouse brain, which is crucial for many ULM brain applications that require awake and behaving animals.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Awake Imaging of Mouse Deep Brain Microvasculature with Super-resolution Ultrasound Localization Microscopy.\",\"authors\":\"Yike Wang, Matthew R Lowerison, Zhe Huang, Qi You, Bing-Ze Lin, Daniel A Llano, Pengfei Song\",\"doi\":\"10.1101/2023.09.01.555789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution. However, existing preclinical ULM applications are largely constrained to anesthetized animals, introducing confounding vascular effects such as vasodilation and altered hemodynamics. As such, ULM quantifications (e.g., vessel diameter, density, and flow velocity) may be confounded by the use of anesthesia, undermining the usefulness of ULM in practice. Here we introduce a method to address this limitation and achieve ULM imaging in awake mouse brain. Pupillary monitoring was used to support the presence of the awake state during ULM imaging. Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions. In the cortex, the effects induced by isoflurane are more pronounced on venous flow than on arterial flow. In addition, serial <i>in vivo</i> imaging of the same animal brain at weekly intervals demonstrated the highly robust longitudinal imaging capability of the proposed technique. The consistency was further verified through quantitative analysis on individual vessels, cortical regions of arteries and veins, and subcortical regions. This study demonstrates longitudinal ULM imaging in the awake mouse brain, which is crucial for many ULM brain applications that require awake and behaving animals.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.09.01.555789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.09.01.555789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超分辨率超声定位显微镜(ULM)是一种新兴的成像方式,可以解决深层组织中毛细血管尺度的微血管问题。然而,现有的临床前ULM应用在很大程度上局限于麻醉动物,引入了血管舒张和血流动力学改变等混杂的血管效应。因此,ULM量化(例如,血管直径、密度和流速)可能会因麻醉的使用而混淆,从而削弱ULM在实践中的有用性。在这里,我们介绍了一种解决这一限制并在清醒小鼠大脑中实现ULM成像的方法。瞳孔监测用于确认ULM成像期间的清醒状态。ULM显示,从麻醉到清醒状态,静脉的血管减少程度比动脉大。中脑的减少最为显著,皮层的减少最不显著。ULM还显示,在清醒状态下,不同大脑区域的静脉血流速度显著降低。每周对同一动物大脑进行一系列体内成像,证明了所提出技术的高度稳健的纵向成像能力。这是第一项证明在清醒小鼠大脑中进行纵向ULM成像的研究,这对于许多需要清醒和行为动物的ULM大脑应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Awake Imaging of Mouse Deep Brain Microvasculature with Super-resolution Ultrasound Localization Microscopy.

Ultrasound localization microscopy (ULM) is an emerging imaging modality that resolves microvasculature in deep tissues with high spatial resolution. However, existing preclinical ULM applications are largely constrained to anesthetized animals, introducing confounding vascular effects such as vasodilation and altered hemodynamics. As such, ULM quantifications (e.g., vessel diameter, density, and flow velocity) may be confounded by the use of anesthesia, undermining the usefulness of ULM in practice. Here we introduce a method to address this limitation and achieve ULM imaging in awake mouse brain. Pupillary monitoring was used to support the presence of the awake state during ULM imaging. Vasodilation induced by isoflurane was observed by ULM. Upon recovery to the awake state, reductions in vessel density and flow velocity were observed across different brain regions. In the cortex, the effects induced by isoflurane are more pronounced on venous flow than on arterial flow. In addition, serial in vivo imaging of the same animal brain at weekly intervals demonstrated the highly robust longitudinal imaging capability of the proposed technique. The consistency was further verified through quantitative analysis on individual vessels, cortical regions of arteries and veins, and subcortical regions. This study demonstrates longitudinal ULM imaging in the awake mouse brain, which is crucial for many ULM brain applications that require awake and behaving animals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised segmentation and characterization of fiber bundles in anatomic tracing data. Single neuron contributions to the auditory brainstem EEG. Neural substrates of cold nociception in Drosophila larva. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1