阐明一个复杂的机制。

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2023-09-29 eCollection Date: 2023-01-01 DOI:10.1093/function/zqad051
Victor Wray
{"title":"阐明一个复杂的机制。","authors":"Victor Wray","doi":"10.1093/function/zqad051","DOIUrl":null,"url":null,"abstract":"ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548849/pdf/","citationCount":"2","resultStr":"{\"title\":\"Elucidating a Complex Mechanism.\",\"authors\":\"Victor Wray\",\"doi\":\"10.1093/function/zqad051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes\",\"PeriodicalId\":73119,\"journal\":{\"name\":\"Function (Oxford, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548849/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Function (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/function/zqad051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating a Complex Mechanism.
ur understanding of the complex dynamic system dri v en by onformational change during adenosine triphosphate (ATP) ydr ol ysis by F 1 -ATPase is of fundamental biochemical imporance. 1 , 2 Cr yo-electr on micr oscopy (Cr yo-EM) studies 3 −5 have ontributed v alua b le structural information on how the F 1 TPase functions, although, in themselves, these have not led o a definiti v e mechanism. The F 1 -ATPase is a multi-subunit sysem containing 3 β-catalytic sites that have been studied by biohysical single-molecule experiments based on direct visualizaion of the rotation of its central γ -subunit. 6 However, it is difcult to esta b lish which interconverting site or sites contribute nergy for the observ ed r otation, gi v en that a site can perform he elementary chemical steps of ATP binding, ATP hydr ol ytic ond cleav a ge, and pr oduct (Pi and adenosine diphosphate, ADP) elease. 7 Originally, the molecular mechanism of ATP syntheis/hydr ol ysis w as studied using classical biochemical pproaches that provided a wealth of fundamental data. A i-site Boyer’s binding change mechanism of ATP syntheis/hydr ol ysis (Nobel Prize for Chemistry, 1997) was postulated etween 1973 and 1993 based on biochemical unisite/multisite atalysis and oxygen exchange experiments. 8 An alternati v e ri-site Nath’s torsional mechanism of energy transduction nd ATP synthesis/hydr ol ysis w as first pr oposed in 1999 and ev eloped ov er the next 25 yr using a nov el m ultidisciplinar y pproac h, 9 whic h inte gr ated physics, c hemistry, bioc hemistry, nd engineering. The dir ect measur ements by Senior and oworkers of the fluorescence quenching of tryptophan probes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct. Loss of STIM1 and STIM2 in salivary glands disrupts ANO1 function but does not induce Sjogren's disease. Bridging the Gap: How Endothelial-Adipocyte Cx43 Mediated Gap Junctions Could Revolutionize Adiposity Regulation. The P2Y6 receptor as a potential keystone in essential hypertension. PARticularly Forceful: PAR1 Drives Glomerular Mesangial Cell Contractility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1