Aruna Sharma, Lianyuan Feng, Dafin F Muresanu, Z Ryan Tian, José Vicente Lafuente, Anca D Buzoianu, Ala Nozari, Igor Bryukhovetskiy, Igor Manzhulo, Lars Wiklund, Hari Shanker Sharma
{"title":"睡眠不足会增强大脑中的淀粉样蛋白β肽、p-tau和血清素:用淀粉样蛋白-β肽、p-tau和5-羟色胺的单克隆抗体纳米线递送脑活素的神经保护作用。","authors":"Aruna Sharma, Lianyuan Feng, Dafin F Muresanu, Z Ryan Tian, José Vicente Lafuente, Anca D Buzoianu, Ala Nozari, Igor Bryukhovetskiy, Igor Manzhulo, Lars Wiklund, Hari Shanker Sharma","doi":"10.1016/bs.irn.2023.05.009","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep deprivation is quite frequent in military during combat, intelligence gathering or peacekeeping operations. Even one night of sleep deprivation leads to accumulation of amyloid beta peptide burden that would lead to precipitation of Alzheimer's disease over the years. Thus, efforts are needed to slow down or neutralize accumulation of amyloid beta peptide (AβP) and associated Alzheimer's disease brain pathology including phosphorylated tau (p-tau) within the brain fluid environment. Sleep deprivation also alters serotonin (5-hydroxytryptamine) metabolism in the brain microenvironment and impair upregulation of several neurotrophic factors. Thus, blockade or neutralization of AβP, p-tau and serotonin in sleep deprivation may attenuate brain pathology. In this investigation this hypothesis is examined using nanodelivery of cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies against AβP, p-tau and serotonin (5-hydroxytryptamine, 5-HT). Our observations suggest that sleep deprivation induced pathophysiology is significantly reduced following nanodelivery of cerebrolysin together with monoclonal antibodies to AβP, p-tau and 5-HT, not reported earlier.</p>","PeriodicalId":94058,"journal":{"name":"International review of neurobiology","volume":"171 ","pages":"125-162"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sleep deprivation enhances amyloid beta peptide, p-tau and serotonin in the brain: Neuroprotective effects of nanowired delivery of cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and serotonin.\",\"authors\":\"Aruna Sharma, Lianyuan Feng, Dafin F Muresanu, Z Ryan Tian, José Vicente Lafuente, Anca D Buzoianu, Ala Nozari, Igor Bryukhovetskiy, Igor Manzhulo, Lars Wiklund, Hari Shanker Sharma\",\"doi\":\"10.1016/bs.irn.2023.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep deprivation is quite frequent in military during combat, intelligence gathering or peacekeeping operations. Even one night of sleep deprivation leads to accumulation of amyloid beta peptide burden that would lead to precipitation of Alzheimer's disease over the years. Thus, efforts are needed to slow down or neutralize accumulation of amyloid beta peptide (AβP) and associated Alzheimer's disease brain pathology including phosphorylated tau (p-tau) within the brain fluid environment. Sleep deprivation also alters serotonin (5-hydroxytryptamine) metabolism in the brain microenvironment and impair upregulation of several neurotrophic factors. Thus, blockade or neutralization of AβP, p-tau and serotonin in sleep deprivation may attenuate brain pathology. In this investigation this hypothesis is examined using nanodelivery of cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies against AβP, p-tau and serotonin (5-hydroxytryptamine, 5-HT). Our observations suggest that sleep deprivation induced pathophysiology is significantly reduced following nanodelivery of cerebrolysin together with monoclonal antibodies to AβP, p-tau and 5-HT, not reported earlier.</p>\",\"PeriodicalId\":94058,\"journal\":{\"name\":\"International review of neurobiology\",\"volume\":\"171 \",\"pages\":\"125-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International review of neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.irn.2023.05.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.irn.2023.05.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Sleep deprivation enhances amyloid beta peptide, p-tau and serotonin in the brain: Neuroprotective effects of nanowired delivery of cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and serotonin.
Sleep deprivation is quite frequent in military during combat, intelligence gathering or peacekeeping operations. Even one night of sleep deprivation leads to accumulation of amyloid beta peptide burden that would lead to precipitation of Alzheimer's disease over the years. Thus, efforts are needed to slow down or neutralize accumulation of amyloid beta peptide (AβP) and associated Alzheimer's disease brain pathology including phosphorylated tau (p-tau) within the brain fluid environment. Sleep deprivation also alters serotonin (5-hydroxytryptamine) metabolism in the brain microenvironment and impair upregulation of several neurotrophic factors. Thus, blockade or neutralization of AβP, p-tau and serotonin in sleep deprivation may attenuate brain pathology. In this investigation this hypothesis is examined using nanodelivery of cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies against AβP, p-tau and serotonin (5-hydroxytryptamine, 5-HT). Our observations suggest that sleep deprivation induced pathophysiology is significantly reduced following nanodelivery of cerebrolysin together with monoclonal antibodies to AβP, p-tau and 5-HT, not reported earlier.