Laura Greenstreet, Anton Afanassiev, Yusuke Kijima, Matthieu Heitz, Soh Ishiguro, Samuel King, Nozomu Yachie, Geoffrey Schiebinger
{"title":"DNA-GPS:无光学空间基因组学的理论框架和当前方法的综合。","authors":"Laura Greenstreet, Anton Afanassiev, Yusuke Kijima, Matthieu Heitz, Soh Ishiguro, Samuel King, Nozomu Yachie, Geoffrey Schiebinger","doi":"10.1016/j.cels.2023.08.005","DOIUrl":null,"url":null,"abstract":"<p><p>While single-cell sequencing technologies provide unprecedented insights into genomic profiles at the cellular level, they lose the spatial context of cells. Over the past decade, diverse spatial transcriptomics and multi-omics technologies have been developed to analyze molecular profiles of tissues. In this article, we categorize current spatial genomics technologies into three classes: optical imaging, positional indexing, and mathematical cartography. We discuss trade-offs in resolution and scale, identify limitations, and highlight synergies between existing single-cell and spatial genomics methods. Further, we propose DNA-GPS (global positioning system), a theoretical framework for large-scale optics-free spatial genomics that combines ideas from mathematical cartography and positional indexing. DNA-GPS has the potential to achieve scalable spatial genomics for multiple measurement modalities, and by eliminating the need for optical measurement, it has the potential to position cells in three-dimensions (3D).</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA-GPS: A theoretical framework for optics-free spatial genomics and synthesis of current methods.\",\"authors\":\"Laura Greenstreet, Anton Afanassiev, Yusuke Kijima, Matthieu Heitz, Soh Ishiguro, Samuel King, Nozomu Yachie, Geoffrey Schiebinger\",\"doi\":\"10.1016/j.cels.2023.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While single-cell sequencing technologies provide unprecedented insights into genomic profiles at the cellular level, they lose the spatial context of cells. Over the past decade, diverse spatial transcriptomics and multi-omics technologies have been developed to analyze molecular profiles of tissues. In this article, we categorize current spatial genomics technologies into three classes: optical imaging, positional indexing, and mathematical cartography. We discuss trade-offs in resolution and scale, identify limitations, and highlight synergies between existing single-cell and spatial genomics methods. Further, we propose DNA-GPS (global positioning system), a theoretical framework for large-scale optics-free spatial genomics that combines ideas from mathematical cartography and positional indexing. DNA-GPS has the potential to achieve scalable spatial genomics for multiple measurement modalities, and by eliminating the need for optical measurement, it has the potential to position cells in three-dimensions (3D).</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.08.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.08.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
DNA-GPS: A theoretical framework for optics-free spatial genomics and synthesis of current methods.
While single-cell sequencing technologies provide unprecedented insights into genomic profiles at the cellular level, they lose the spatial context of cells. Over the past decade, diverse spatial transcriptomics and multi-omics technologies have been developed to analyze molecular profiles of tissues. In this article, we categorize current spatial genomics technologies into three classes: optical imaging, positional indexing, and mathematical cartography. We discuss trade-offs in resolution and scale, identify limitations, and highlight synergies between existing single-cell and spatial genomics methods. Further, we propose DNA-GPS (global positioning system), a theoretical framework for large-scale optics-free spatial genomics that combines ideas from mathematical cartography and positional indexing. DNA-GPS has the potential to achieve scalable spatial genomics for multiple measurement modalities, and by eliminating the need for optical measurement, it has the potential to position cells in three-dimensions (3D).