从紫荆叶中分离的内生真菌代谢产物对过氧化物酶体增殖物激活受体α、β/δ和γ表现出抗氧化活性和激动剂活性。

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2022-12-08 eCollection Date: 2022-01-01 DOI:10.3389/ffunb.2022.1049690
Pedro Góes Mesquita, Laiza Magalhaes de Araujo, Francisco de Assis Rocha Neves, Maria de Fátima Borin
{"title":"从紫荆叶中分离的内生真菌代谢产物对过氧化物酶体增殖物激活受体α、β/δ和γ表现出抗氧化活性和激动剂活性。","authors":"Pedro Góes Mesquita,&nbsp;Laiza Magalhaes de Araujo,&nbsp;Francisco de Assis Rocha Neves,&nbsp;Maria de Fátima Borin","doi":"10.3389/ffunb.2022.1049690","DOIUrl":null,"url":null,"abstract":"<p><p><i>Diabetes mellitus</i> is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from <i>Bauhinia variegata</i> leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.</p>","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolites of endophytic fungi isolated from leaves of <i>Bauhinia variegata</i> exhibit antioxidant activity and agonist activity on peroxisome proliferator-activated receptors α, β/δ and γ.\",\"authors\":\"Pedro Góes Mesquita,&nbsp;Laiza Magalhaes de Araujo,&nbsp;Francisco de Assis Rocha Neves,&nbsp;Maria de Fátima Borin\",\"doi\":\"10.3389/ffunb.2022.1049690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Diabetes mellitus</i> is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from <i>Bauhinia variegata</i> leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.</p>\",\"PeriodicalId\":73084,\"journal\":{\"name\":\"Frontiers in fungal biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in fungal biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffunb.2022.1049690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2022.1049690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种影响全球数百万人的代谢紊乱,与氧化应激和炎症有关。噻唑烷二酮(TZD)通过激活过氧化物酶体增殖物激活受体γ(PPARγ)来改善2型糖尿病患者的胰岛素增敏和葡萄糖稳态。然而,它们的使用与严重的不良影响有关,如骨量减少、体液滞留、肝脏和心脏问题,以及膀胱癌症风险增加。部分PPARγ激动剂可促进噻唑烷二酮的有益作用,不良反应较少。内生真菌定殖植物组织,并通过与它们的相互作用而具有特别活跃的代谢,这导致产生具有显著生物效应的天然产物,可能与定殖植物的生物效应相似。在这里,我们从紫荆叶中分离出七种具有抗氧化活性的内生真菌。此外,其中一种提取物对PPAR表现出泛激动剂活性,另一种提取物表现出PPARα和PPARβ/δ活性。更好地理解这种关系有助于理解抗氧化剂在治疗糖尿病及其并发症中的作用机制。此外,具有这些减少氧化应激和激活促进葡萄糖稳态的受体的能力的化合物是治疗糖尿病的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolites of endophytic fungi isolated from leaves of Bauhinia variegata exhibit antioxidant activity and agonist activity on peroxisome proliferator-activated receptors α, β/δ and γ.

Diabetes mellitus is a metabolic disorder that affects millions of people worldwide and is linked to oxidative stress and inflammation. Thiazolidinediones (TZD) improve insulin sensitization and glucose homeostasis mediated by the activation of peroxisome proliferator-activated receptors γ (PPARγ) in patients with type 2 diabetes. However, their use is associated with severe adverse effects such as loss of bone mass, retention of body fluids, liver and heart problems, and increased risk of bladder cancer. Partial PPARγ agonists can promote the beneficial effects of thiazolidinediones with fewer adverse effects. Endophytic fungi colonize plant tissues and have a particularly active metabolism caused by the interaction with them, which leads to the production of natural products with significant biological effects that may be like that of the colonized plant. Here, we identify seven endophytic fungi isolated from Bauhinia variegata leaves that have antioxidant activities. Also, one of the extracts presented pan-agonist activity on PPAR, and another showed activity in PPARα and PPARβ/δ. A better understanding of this relationship could help to comprehend the mechanism of action of antioxidants in treating diabetes and its complications. Moreover, compounds with these capabilities to reduce oxidative stress and activate the receptor that promotes glucose homeostasis are promising candidates in treatment of diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Metal tolerance of Río Tinto fungi. What lies behind the large genome of Colletotrichum lindemuthianum. Conserved perception of host and non-host signals via the a-pheromone receptor Ste3 in Colletotrichum graminicola. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. gloeosporioides. Editorial: Co-morbidity of COVID 19 and fungal infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1