Ziwei Meng, Dan Liu, Shuhui Li, Zhiyi Xu, Qianqian Deng, Yang Liu
{"title":"芝麻中24类农药的快速多残留分析及其向加工产品中的迁移。","authors":"Ziwei Meng, Dan Liu, Shuhui Li, Zhiyi Xu, Qianqian Deng, Yang Liu","doi":"10.1016/j.foodres.2023.113322","DOIUrl":null,"url":null,"abstract":"<p><p>Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.</p>","PeriodicalId":94010,"journal":{"name":"Food research international (Ottawa, Ont.)","volume":"173 Pt 1","pages":"113322"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products.\",\"authors\":\"Ziwei Meng, Dan Liu, Shuhui Li, Zhiyi Xu, Qianqian Deng, Yang Liu\",\"doi\":\"10.1016/j.foodres.2023.113322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.</p>\",\"PeriodicalId\":94010,\"journal\":{\"name\":\"Food research international (Ottawa, Ont.)\",\"volume\":\"173 Pt 1\",\"pages\":\"113322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food research international (Ottawa, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodres.2023.113322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food research international (Ottawa, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.foodres.2023.113322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A fast multi-residue analysis of twenty-four classes of pesticide in sesame (Sesamum indicum L.) and their migration into processed products.
Sesame is widely used as a nutritional supplement or condiment because of its nutritious properties and palatable flavor. However, the extensive use of pesticides in sesame fields has paradoxically decreased the nutritional vantage. The current study used QuEChERS with a low-temperature freezing method to develop a multi-residue analytical approach to detect target analytes (pesticides) in sesame seed, sesame oil, sesame paste, and sesame meal. The migration ability of target pesticides during oil processing was investigated using HPLC-MS/MS and GC-MS: 35% of pesticides decreased, with processing factors (PFs) lower than 0.98, whereas 65% migrated from the seed to the oil during processing. The migration success of methoxyfenozide was the highest, while clothianidin and pymetrozine demonstrated a significantly lower rate of transfer. The results provide insight into the types of pesticides that should be used in farming practices of sesame to decrease the impact on human health.