Shu Wang, Eduardo D Sontag, Douglas A Lauffenburger
{"title":"在单细胞组学数据的2D可视化中不能正确看到什么?","authors":"Shu Wang, Eduardo D Sontag, Douglas A Lauffenburger","doi":"10.1016/j.cels.2023.07.002","DOIUrl":null,"url":null,"abstract":"<p><p>A common strategy for exploring single-cell 'omics data is visualizing 2D nonlinear projections that aim to preserve high-dimensional data properties such as neighborhoods. Alternatively, mathematical theory and other computational tools can directly describe data geometry, while also showing that neighborhoods and other properties cannot be well-preserved in any 2D projection.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863674/pdf/","citationCount":"0","resultStr":"{\"title\":\"What cannot be seen correctly in 2D visualizations of single-cell 'omics data?\",\"authors\":\"Shu Wang, Eduardo D Sontag, Douglas A Lauffenburger\",\"doi\":\"10.1016/j.cels.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A common strategy for exploring single-cell 'omics data is visualizing 2D nonlinear projections that aim to preserve high-dimensional data properties such as neighborhoods. Alternatively, mathematical theory and other computational tools can directly describe data geometry, while also showing that neighborhoods and other properties cannot be well-preserved in any 2D projection.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.07.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.07.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What cannot be seen correctly in 2D visualizations of single-cell 'omics data?
A common strategy for exploring single-cell 'omics data is visualizing 2D nonlinear projections that aim to preserve high-dimensional data properties such as neighborhoods. Alternatively, mathematical theory and other computational tools can directly describe data geometry, while also showing that neighborhoods and other properties cannot be well-preserved in any 2D projection.